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Abstract—In this paper, we propose an adaptive template
for semantic labeling of indoor scene objects and estimating
their oriented bounding facets (OBFs). The proposed adaptive
template encodes prior geometric information of objects based
on statistics of the training images. Given an input image,
we utilize the adaptive template on the detected bounding
boxes to initialize the raw labeling and OBF estimation of
objects. To refine the initial results, multiple cubes/faces that
follows geometric principles of adaptive template are generated
to make up OBFs hypotheses. Each of the OBFs hypotheses
is scored by the consistency matched with its corresponding
semantic labeling result. The OBFs hypothesis that has the
highest matching score with the corresponding labeling result
is selected as the final parsing result. We evaluate our method
on the bed, sofa and tea table categories, on both real and
rendered indoor scenes. The experimental results show that our
method has improved performance compared with the state-of-
the-art detectors, and can give reasonable 3D interpretations
of objects.

Keywords-Image scene understanding; Semantic labeling;
Geometry parsing

I. INTRODUCTION

Indoor scene understanding resulting in geometry estima-

tion or semantic labeling is one of the most fundamental

problems in computer vision. Previous works have mostly

focused on the processing of outdoor scenes. Indoor scenes,

on the other hand, have received relatively less attention.

This is due in part to certain unique challenges the indoor

scene object parsing problem presents, including poor illu-

mination, diversity in the scene and a lack of distinctive

features [1].

Recently, interests in indoor scene analysis and modeling

have been feuded by the ease of capturing RGB+D images

with the aid of devices such as Kinect. The availability of

depth information, though noisy at times, makes the analysis

problem more tractable. Model- or data-driven approaches

have been proposed for indoor scene labeling [1] and object

recognition [2], [3], [4], [5]. Prior knowledge evidently plays

the key role in improving the accuracy of these solutions; it

may even be a necessity.

Compared to depth images, conventional RGB images

are still much easier to acquire and manipulate (e.g., when

preparing for training data). The ability to understand an
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Figure 1. The motivation of our method. (a) The input image, (b) semantic
labeling result, (c) and (d) are both the OBFs estimation results (in different
visualization). In (c), yellow lines indicate the 3D structure lines aligned
to the object. In (d), different color illustrates different faces of an object.

indoor object from a single image allows us to tap into and

utilize the vast repository of existing images. Existing works

on indoor scene understanding from single images have ad-

dressed the problems of sparse geometry estimation [6], [7],

[8], [9], [10], recovery of room layout and spatial relations

between objects [6], [7], [10], as well as object detection [8].

However, these works mostly focus on the recognition of

objects, resulting in a rough geometry estimation of object,

much less the geometry estimation of object faces. They

generally utilize cubes or boxes to approximate objects,

whereas regardless of the object diversity in appearance and

shape.

In this paper, we also address the problem of indoor

scene understanding from a single image, while seeking

an understanding at a more granular level, i.e, object-level.

Specifically, we predict a semantic labeling of the object in

an input scene image and estimate the geometry of each

labeled object by inferring a set of oriented bounding facets
(OBFs). The semantic labels and geometric estimation can

be directly applied to subsequent scene modeling taskes such

as object rearrangements, replacements, and resizing.

Our algorithm is naturally template-guided and utilizes

annotated data consists of semantically labeled indoor scene

images and OBF labeling of objects contained in the image

dataset. We pose the scene image analysis problem as an

object parsing problem, where the solution is guided by an

adaptive template. The adaptive object template, incorporat-
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Figure 2. The overview of our method. Our adaptive template severs as
guidance for our method including four steps: bounding box detection, raw
estimation, useful lines exaction, OBFs estimation.

ed with a body cube and adaptive faces, are derived from

annotated image dataset. Given an input image, we extend

the deformable part model of [11] to estimate the bounding

box of objects. Based on these bounding box detections, we

generate a raw estimation of semantic labeling and rough

localization of object template vertexes. Based on the raw

estimation of OBFs, we generate multiple OBFs hypotheses

incorporating the extracted useful line segments. Utilizing

precise semantic labeling for each OBFs hypothesis, the final

object-parsing result is inferred through matching degree

between semantic labeling and OBFs estimation.

The main contributions of this paper include: 1) It pro-

vides a new perspective to parsing object through adaptive

template, resulting in semantic labeling as well as OBFs

estimation of object. 2) An adaptive object template incor-

porating geometry information. Due to the adaptive property,

our template handles well OBFs estimation, especially when

the objects are diverse in appearance and shape.

II. RELATED WORK

Recently, several literatures propose parsing grammar or

interpreting graph for image scene understanding [12],

[13], [14], [15], [16]. In these literatures, their presented

representative units, such as block [13], facade [14] or line

segment [16], to imply shape and geometric information.

According to spacial relationship or grammar rules, these

units are used to parse the image scene into a hierarchical

structure in terms of semantic or geometric. Inspired by these

parsing methods, we propose an adaptive object template

for object parsing, which integrates semantic labeling and

OBFs estimation into a unified framework. The work of

Gupta et al.[13] is similar to ours to some extent. They parse

the image scene into a 3D graph taking steps of semantic

labeling, depth ordering, geometry estimation and support

recovery. However, they deal with the outdoor scene image,

not the indoor scene object. A rich literatures related to

Figure 3. Illustration of our template. Take object bed for example, the
entire object is the root node, it consists of a body cube and an adaptive
face which is the head of bed. Every face and cube are represented by
vertexes.

indoor scene understanding pay much attention on the spatial

layout estimation [6], [16], [9], [2], [17] but less on the

object parsing which serves as a main purpose of our work,

especially using a single image without depth information.

The most similar works to ours are those of [8], [10], [7].

Hedau et al.[8] develop a 3D cuboid box to represent

the indoor scene objects. The orientation of an object is

estimated based on the orientation of the room as they with

the assumption that the faces of object cuboids are parallel

to the walls. Thus they adopt a searching strategy by sliding

a 3D cuboid to fit the object and generate object hypotheses.

To score these hypotheses, they apply a trained SVM as well

as 2D detectors. A difference compared to our work lies in

that they do not predict the class of an object while we do

semantic labeling of objects. Another difference from [8] is

that our object template has adaptive faces to indicate the

orientation and distinguish structures of different categories.

Lee et al.[7] use the volumetric constraints to generate

hypothesis of both indoor scene and objects. In terms of

object geometric representation, they adopt a coarse 3D

parametric cuboid to reason the spatial layout of an object

without recognizing the object class. It share the same

difference with [8] from ours as our method can reason

the spatial orientation of an object as well as its semantic

category.

Subsequently, Hedau et al.[10] extend backrest to the

generic 3D representation box for objects like sofas and

chairs. Though their extension can detect certain category

objects, they still do not identify the recognition and se-

mantic labeling. Their object candidates are searched by

sliding the 3D box and scored using trained SVM classifier

with local contrast image features, however,our refinement

of object OBFs estimation exploits the semantic labeling

result and OBFs of object template.

III. OBJECT PARSING

Our goal is to parse the indoor scene object into precise

semantic regions and oriented bounding facets. We propose

adaptive object templates to model the oriented bounding

facets of objects. The overview of our method is shown
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in Figure 2. We extend the deformable part model of [11]

to estimate the bounding box of objects. Based on these

bounding box detections, we generate a raw estimation of

semantic labeling and rough localization of object template

vertexes. With the raw estimation of OBFs, we generate

multiple OBFs hypotheses incorporating the extracted useful

line segments. Then, we score precise semantic labeling

and OBFs for each hypothesis. The score is obtained by

using reliability of geometry and matching degree between

semantic labeling and OBFs, hypothesis with the best score

is the final object-parsing result.

A. Adaptive template

Rather than utilizing cubes or boxes to approximate

objects, we propose a hierarchical template incorporating

adaptive parts as well as geometric information of object.

As shown in Figure 3, this template contains three levels

which are implying the geometric information of an object

from coarse to fine. The first level is a root node which

denotes the entire object. In the second level, the node

is a part-based component of cube or face. Due to the

shape diversity, some part may be absent for objects from a

category. For example, some chairs have backs while others

don’t. Thus we append an occurrence attribute to indicate

whether the part is in the object or not, which makes our

object template adaptive. It is observed that a rectangle face

and a cube consist of fixed number of vertexes (4 and 8

respectively). Once we have located vertexes, the bounding

boxes and orientations of cubes or faces can be localized.

Hence, in the third level, the node represents the vertex. The

part component and the entire object can be comprised of

the vertex nodes.

To annotate the training images, we develop a template

vertexes annotation tool. Using this tool, we label the objects

with their category, vertexes, as well as the occurrence

attribute for each vertex. For one category template, we

learn the position distribution of each vertex in the training

images. To expand the number of our sample, we flip the

object to get a symmetrical sample.

Our adaptive template is utilized in the following steps of

raw estimation, and OBFs estimation. Specifically, low level

information of template guides the generation of cubes and

faces, and the high level information of template guides raw

estimation and OBFs estimation.

B. Object detection

To implement an exact parsing for an object, we first

utilize the current object detection technique, which is

improved apparently in recent years. Since the objects in

our dataset have diverse appearance, to train discriminative

object detectors, we preprocess our training images by

clustering them into several subsets through a two-level

clustering scheme. At first level, relative locations of labeled

object vertexes with similar length-width ratio are fed as

features into spectral clustering algorithm, since the detector

is sensitive to them. We obtain M(M < 5) clusters after

this step. At the second level, we further subdivide the M

clusters by object poses. Although labels like left, right and

front are provided for each object in some datasets like

VOC[18], they are too rough to distinguish from objects

under arbitrary views. In addition, as mentioned in section

II, there are optional faces of object, so we use the locations

of vertexes on the present faces as features to differentiate

poses of objects. As shown in Figure 3, taking an object bed
for example, ten vertexes are indexed, where vertex 3 and

10 are stationary vertexes while vertex 1 and 2 are vertexes

on the head of bed, i.e, an optional part.

By this two-level clustering, we split objects in the same

category label into N clusters, denoted as N classes, where

objects in the same class have similar height-width ratio,

similar distribution of vertexes and poses. In addition, con-

sidering the horizontal symmetry, we add the flipped location

of vertexes into the second level features to handle horizontal

symmetry. Figure 4 (a),(b) shows example training images

and the corresponding part-based models for each cluster.

The detectors are trained and refined through an EM-like

process. In each iteration, we train detector on the clustered

images. The trained detector is then used to score each

training instance. If an object in cluster A has a higher score

respecting to the detector trained on cluster B, we move

the object from A to B. Generally 3 iterations can produce

enough good results.

C. Raw estimation

With bounding box of objects and the guidence of adap-

tive template, we can estimate a raw semantic labeling and

OBFs for objects.

As mentioned above, we have clustered training dataset

into N classes. The similar geometry information of objects

in a class, locations of vertexes, is regarded as prior geomet-

ric property. Each class has a corresponding adaptive object

template. For images in a class, we statistic the relative

location of each vertex of objects in their bounding boxes.

For each data sample, we flip the object to get a symmetrical

sample, thereby expand the number of sample.

In order to avoid misleading of occasional samples, we

sort the vertexes of samples by their relative location inside

the bounding box. Only the samples in the central seventy

percentages of the sorted data list are accepted as the

statistical samples as the prior. Then we calculate the mean

values of relative locations of samples. Figure 4 (c) shows

the relative locations of vertexes for each class.

Given an input image with detection result by part-based

model, we localize the vertexes in the bounding box with

location prior as initial vertexes, thus we can get initial

faces of object guided by the low level information of our

template. With over-segmentation of this image, we compute
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Figure 4. Visualization of our part-based model and geometric prior for
each class of object bed. Four class types are shown here. The first two
columns give some example images from training set of each class, where
images in each row are symmetric object examples. The third column shows
the visualization of part-based model and the fourth column visualizes the
geometry prior which are relative locations of vertexes statisted on each
class.

the area rate amid these faces for each superpixel and remove

superpixels which rates are lower than a threshold.

We compute the possibility of a superpixel belonging to

the object. Here, m is the number of pixels both in superpixel

i and faces, n denotes the number of pixels in superpixel i,
the rate of superpixel i inside faces is ratei = m

n . Based

on this rate, we compute a probability map for an object as

raw semantic labeling. The probability of pixel p is :

Sp∈i =

⎧⎨
⎩

0 if ratei ≤ θ1
1 if ratei ≥ θ2
rate other

(1)

In our implementation, θ1 is 0.1 and θ2 is 0.65. For each

object template, we compute the matching score between

initial vertex locations and raw semantic labeling. The

matching score is the mean score of pixels which have higher

pixel score than a threshold (0.8). The template which has

the best matching score with probability map is selected as

the best initialization. Then we get the initial vertexes of

OBFs and raw semantic labeling.

D. Line segments exaction

We over-segment the input image into superpixels using

algorithm of [19] and exact line segments using the Matlab

toolbox by Kovesi [20] which runs Canny edge detector,

links edge pixels and fits line segments. Then we produce

line segments by a merging processing as described in

Algorithm 1. There are some notations we used: slope

distance DSij between line li and line lj , the endpoint

distance DEP ij between lines li and lj , and the difference

of two lines li and lj Dij . ep(li) is the endpoint of line li.

Dij = λ1DSij + λ2DEP ij (2)

Algorithm 1 Merging Line Segments

Require: L = {l1...ln}:initial line segments

α, β: thresholds

Ensure: M = {m1...mk}:merged lines

1: flag = 1;

2: Merge line segments

while flag do
Lmerge = {li, lj | DSij ≤ α

⋂
DEP ij ≤ β}

if Lmerge is empty then
flag = 0;

else
[li, lj ] = min{Dij | (li, lj) ∈ Lmerge}
lnew = merge{li, lj}, updata L

end if
end while
M=L;

where

DSij = |slope (li)− slope (lj)|
DEP ij =min (Distance (∀ep (li) , ∀ep (lj)))

Since vaninshing points can be computed by line

segments[21], and are important in indoor scene geometry

estimation, we classify line segments to corresponding van-

ishing points and we list the geometric principles will be

used in following steps:

i. If a line belongs to one vanishing point, it should

pass this vanishing point or pass the vanishing point

through a small rotation angle.

ii. Parralle lines belong to the same vanishing point and

adjacent lines belong to different vanishing point.

iii.Opposing faces should be parallel, which means that

they should be classified to the same vanishing point.

Adjacent faces should be classified to different van-

ishing points.

iv. Faces of a cube should be classified to three different

vanishing points.

E. OBFs estimation

Having raw estimation and useful lines we can process

the OBFs estimation of objects.We adopt a bottom-up and

top-down strategy to perform OBFs estimation. Figure 5

shows the pipeline of our OBFs estimation. We have already

generate line segments in the image as bottom node and a

raw OBFs and semantic labeling as our top hierarchy node,

we generate OBFs hypotheses in four steps as following.

Firstly, we search useful lines with initial lines and initial

vertexes. We search the candidate lines for every lines of

object around them within a small deformation that we

define as a small rotation angle and a short translation.

Guided by the raw semantic labeling, we narrow down the

search range that we only search lines passing our raw
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Figure 5. Illustration of OBFs hypotheses estimation. We generate cubes
and faces by useful lines and raw semantic labeling and OBFs, OBFs
hypotheses are generated by combination of cubes and faces.

semantic labeling with an average of pixels’ scores over a

threshold (0.3). For each line, we generate their candidate

set consist of these similar lines and their initial lines linked

by initial vertexes as useful lines.

Secondly, we generate faces and cubes by line sets. For

a face, we have four candidate line set. Take a combination

of four lines from these four set, we compute intersection

point by 2 adjacent lines as vertexes of face. If four lines

allow geometric principles and generate a face without large

variety, this face will be added into face candidates. For a

cube, there are six outer lines. To generate a cube candidate,

it may be a little complicated that we use three steps for

generation. First, we localize the six outer vertexes on the

cube similar to faces generation. Then we need to fix the

vertexes inside cube. To allow the individual lines to deform

slightly, for example we compute location of V 7 in Figure

6, we firstly compute possible equations of lines l(7,6), l(7,4)
and l(7,8), here we take line l(7,6) as example.

Before the calculation, we need to ascertain which van-

ishing point line l(7,6) belongs to. We calculate the average

intersection angles between initial lines of object and every

vanishing point vpi of image shown in Figure 6, we ascertain

each line the vanishing point vpi with the intersection angle

as small as possible satisfied geometric principles. Though

we can directly calculate the equtation of line l(7,6), we try

to use the parallel relationship to revise it which can get a

better result when vanishing point are not correct and more

accordant when the side of object actually have a roll angle:

l(7,6) = αFparallel

(
l(7,6)|V 4, V 5, V 8, V 9

)

+βFvp

(
l(7,6)|V 6

) (3)

Here, we set α = 0.7 and β = 0.3. Given location of V 6,

Fvp computes the equation of l(7,6) by the equation of line

l(vpi,6)
. In Figure 6, we difine Dis(Vi, Vj) is the distance

between vertex Vi and vertex Vj , then Fparallel is defined

as:

Figure 6. Example for localization of vertexes inside cube. We show
opposite sides of cube in same color.

Fparallel

(
l(7,6)|V 4, V 5, V 8, V 9

)
= λ1l(4,5) + λ2l(8,9) (4)

λ1 =
Dis(V 5, V 6)

Dis(V 5, V 6) +Dis(V 9, V 6)
, (5)

λ2 =
Dis(V 9, V 6)

Dis(V 5, V 6) +Dis(V 9, V 6)
(6)

Then we compute crossover point for each pair of lines

l(7,6), l(7,4) and l(7,8) and use the mean value of the locations

of crossover points as the location of vertex V 7. Thirdly, we

need to combine faces and cubes into objects hypotheses.

Since the influence factor is their common edge, we define

a matching score:

score = exp {− (λ1Dij + λ2Dvertex)} (7)

Dvertex(li, lj) =

∑(|LocVi1
− LocVj1

|+ |LocVi2
− LocVj2

|)
2

(8)

Here, li is the common edge of the face while lj is the

edge of the cube, Vi1 and Vi2 are the end point of line li,
Vj1 and Vj2 are the end point of line lj , LocV means the

location of point V , Dij is the difference between two lines

li and lj calculated by (2).

For each cube candidate, we search for the face with grat-

est matching probability to generate corresponding object

hypothesis.

In the end, having object candidates, we can finally

infer the best OBFs estimation and exact accurate semantic

labeling from candidates. Repeat the process of computing

semantic labeling in section III-C on each object candidates

and the corresponding semantic labeling result can be easily

computed by labeling the pixels in the probability map with

a score larger than a threshold(0.8) to find the best object

parsing result. The score is defined as average precision of

semantic labeling and OBFs.
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Figure 7. Our results of both bedroom and living room. Column 1 and 4 are the results of OBFs estimation, visualized in aligned object. Column 2 and
5 are also the results of OBFs estimation, which visualized in colored faces. Column 3 and 6 are the results of semantic labeling, where lagend bar is
shown below.

IV. EXPERIMENTS AND RESULTS

We perform our method on different size of training

set including 100, 200, 300 and 400 images. With the

increasing of training images, the performance and training

time both increase. To balance between training time and

performance, we finally choose 212 images as our training

images which are automatically clustered into 12 classes. We

test our method on 149 images of bedroom scenes, including

bedroom and living room scenes. In the test images, there are

72 images from Hedau et al.[8], which are mostly pictured

from real scenes. To extend our performance, we add other

77 elegant rendered images scenes searched from Google.

Figure 7 shows some results results of both bedroom and

living room, including bed, sofa and tea table categories.

We also compare geometry estimation of our result with the

published images of Hedau et al.[8] in Figure 8.

Since our cubes and faces generation are guided by the

lines in image and the adaptive properties of our template,

the edges of our OBFs results are more precise to the real

boundary of objects. Our method works well on objects

which have not adaptive parts, such as the top two examples

in the fourth column of Figure 7. Besides, our object-level

detection template leads to parse multiple objects in the

image, while theirs [8] do not. For example, we can handle

with the multiple sofas in Figure 7 and two beds in the third

column in Figure 8.

To evaluate the object detection accuracy , we compare out

method with the state-of-the-art algorithm of Felzenszwalb

et al.[11], as shown in Table I. The evaluation criteria

Average Precison AP (object) are similar to VOC Chal-

lenge, map(result) represents the bounding box result of

OBFs estimation and map(gt) represents the ground truth

of the bounding box.

Besides, we evaluate the geometric labeling in terms of the

overlap of each face. RF represents the result of our OBFs

estimation and GT represents the ground truth respectively.

Since we have indexed faces of an object, we compute the

average precisions of each face AP (facei).
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Figure 8. Geometry estimation comparison. In the first three columns, we compare our results (the second row) with that of Hedau et al.[8] (the first
row). In the last threee columns, we compare our results (the fifth and sixth columns) with that of Xiao et al. [22] (the fourth column).

AP (facei) =
RF = facei

⋂
GT = facei

RF = facei
⋃

GT = facei
(9)

AP (all) =

⋃
i(RF = facei

⋂
GT = facei)⋃

i(RF = facei
⋃

GT = facei)
(10)

Method
Indoor dataset [8] Our dataset

Bed Cube Bed Cube
Method [11] 0.636 - 0.641 0.568
Our method 0.768 - 0.766 0.818

Table I
AVERAGE PRECISION. THE ”CUBE” MEANS OBJECTS WHICH HAVE

CUBIC SHAPE, SUCH AS TEA TABLE.

Average Precision
Head Left/right Horizontal Front

Indoor Dataset[8] 0.502 0.541 0.478 0.467
Our Dataset 0.495 0.541 0.456 0.428

Table II
AVERAGE PRECISION(AP) OF EACH FACE.

As shown in Table.II, the AP is higher in the head and

left/right side than in the Horizontal and front face. The

poor precision in Horizontal and front face is caused by the

misleading lines on the bed, such as the pattern on bedsheet

or the boundary of pillow and quilt. For the left/right side,

although there are redundant lines, our semantic labeling

can restrain the geometric labeling to match the proper lines

abandoning the outlier ones. Due to this adaptive property,

we gain a higher AP on the head of bed.

V. CONCLUSIONS

In this paper, an adaptive template is proposed for pars-

ing object of indoor scene image. Rather than capturing

the cuboid of object by estimating camera parameters and

detecting cubes, we address the problem of object parsing

Figure 9. Failure cases. These examples are failed due to poor extracted
lines.

by template-guided inference of oriented bounding facets
(OBFs) and semantic labeling of object.

Failing cases in Figure 9 suggests that the performance of

OBFs estimation is sensitive to the goodness of useful line

extraction. As a result, our method may fail in classifing

objects into correct classes when encountered with objects

bounding with non-straight lines and some misleading lines

of other objects. Likewise, we agree with many researchers

[8], [10] that features from images are helpful to evaluate

the homogeneity of texture in a face, so we aim to extend

our object model to learn more features of images from

richer data sources and extend our adaptive template to other

categories in future work.

ACKNOWLEDGMENT

This work was partially supported by NSFC (61421003)

& (61370113), 863 Program (2013AA013801), and SRFDP

(20131102130002).

22



REFERENCES

[1] X. Ren, L. Bo, and D. Fox, “RGB-(D) Scene Labeling:
Features and Algorithms,” in Proc. of CVPR, 2012.

[2] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor
segmentation and support inference from rgbd images,” in
Proc. of ECCV (5), 2012, pp. 746–760.

[3] L. Nan, K. Xie, and A. Sharf, “A search-classify approach for
cluttered indoor scene understanding,” ACM Trans. Graph.,
vol. 31, no. 6, p. 137, 2012.

[4] Y. M. Kim, N. J. Mitra, D.-M. Yan, and L. J. Guibas, “Acquir-
ing 3d indoor environments with variability and repetition,”
ACM Trans. Graph., vol. 31, no. 6, p. 138, 2012.

[5] T. Shao, W. Xu, K. Zhou, J. Wang, D. Li, and B. Guo, “An
interactive approach to semantic modeling of indoor scenes
with an rgbd camera,” ACM Trans. Graph., vol. 31, no. 6, p.
136, 2012.

[6] V. Hedau, D. Hoiem, and D. A. Forsyth, “Recovering the
spatial layout of cluttered rooms,” in Proc. of ICCV, 2009,
pp. 1849–1856.

[7] D. C. Lee, A. Gupta, M. Hebert, and T. Kanade, “Estimating
spatial layout of rooms using volumetric reasoning about
objects and surfaces,” in Proc. of NIPS, 2010, pp. 1288–1296.

[8] V. Hedau, D. Hoiem, and D. A. Forsyth, “Thinking inside the
box: Using appearance models and context based on room
geometry,” in Proc. of ECCV (6), 2010, pp. 224–237.

[9] A. Gupta, S. Satkin, A. A. Efros, and M. Hebert, “From 3d
scene geometry to human workspace,” in Proc. of CVPR,
2011, pp. 1961–1968.

[10] V. Hedau, D. Hoiem, and D. A. Forsyth, “Recovering free
space of indoor scenes from a single image,” in Proc. of
CVPR, 2012, pp. 2807–2814.

[11] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-
manan, “Object detection with discriminatively trained part
based models,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 32, no. 9, pp. 1627–1645, 2010.

[12] F. Han and S. C. Zhu, “Bottom-up/top-down image parsing
with attribute grammar,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 31, no. 1, pp. 59–73, 2009.

[13] A. Gupta, A. A. Efros, and M. Hebert, “Blocks world
revisited: Image understanding using qualitative geometry and
mechanics,” in Proc. of ECCV (4), 2010, pp. 482–496.

[14] P. Zhao, T. Fang, J. Xiao, H. Zhang, Q. Zhao, and L. Quan,
“Rectilinear parsing of architecture in urban environment,” in
Proc. of CVPR, 2010, pp. 342–349.

[15] H. Zhang, T. Fang, X. Chen, Q. Zhao, and L. Quan, “Par-
tial similarity based nonparametric scene parsing in certain
environment,” in Proc. of CVPR, 2011, pp. 2241–2248.

[16] Y. Zhao and S. C. Zhu, “Image parsing with stochastic scene
grammar,” in Proc. of NIPS, 2011, pp. 73–81.

[17] D. F. Fouhey, V. Delaitre, A. Gupta, A. A. Efros, I. Laptev,
and J. Sivic, “People watching: Human actions as a cue for
single view geometry,” in Proc. of ECCV (5), 2012, pp. 732–
745.

[18] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman, “The pascal visual object classes (voc)
challenge,” International Journal of Computer Vision, vol. 88,
no. 2, pp. 303–338, 2010.

[19] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour
detection and hierarchical image segmentation,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 33, no. 5, pp. 898–916, 2011.

[20] P. D. Kovesi, “MATLAB and Octave functions for com-
puter vision and image processing,” Centre for Ex-
ploration Targeting, School of Earth and Environmen-
t, The University of Western Australia, available from:
<http://www.csse.uwa.edu.au/∼pk/research/matlabfns/>.

[21] C. Rother, “A new approach to vanishing point detection
in architectural environments,” Image and Vision Computing,
vol. 20, no. 9-10, pp. 647–655, 2002.

[22] J. Xiao, B. C. Russell, and A. Torralba, “Localizing 3d
cuboids in single-view images,” in NIPS, 2012, pp. 755–763.

23


