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Abstract

Finding what is and what is not a salient object can be
helpful in developing better features and models in salient
object detection (SOD). In this paper, we investigate the im-
ages that are selected and discarded in constructing a new
SOD dataset and find that many similar candidates, com-
plex shape and low objectness are three main attributes of
many non-salient objects. Moreover, objects may have di-
versified attributes that make them salient. As a result, we
propose a novel salient object detector by ensembling lin-
ear exemplar regressors. We first select reliable foreground
and background seeds using the boundary prior and then
adopt locally linear embedding (LLE) to conduct manifold-
preserving foregroundness propagation. In this manner, a
foregroundness map can be generated to roughly pop-out
salient objects and suppress non-salient ones with many
similar candidates. Moreover, we extract the shape, fore-
groundness and attention descriptors to characterize the ex-
tracted object proposals, and a linear exemplar regressor is
trained to encode how to detect salient proposals in a spe-
cific image. Finally, various linear exemplar regressors are
ensembled to form a single detector that adapts to various
scenarios. Extensive experimental results on 5 dataset and
the new SOD dataset show that our approach outperforms
9 state-of-art methods.

1. Introduction

Salient object detection (SOD) is a fundamental problem
that attracts increasing research interests [16} 35 [36]]. In
SOD, a key step is to distinguish salient and non-salient ob-
jects using the visual attributes. However, in complex sce-
narios it is often unclear which attributes inherently make an
object pop-out and how to separate salient and non-salient
objects sharing some attributes (see Fig.[I)). As a result, an
investigation on what is and what is not a salient object is
necessary before developing SOD models.
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Figure 1. Salient objects can pop-out for having different visual
attributes, which may be partially shared with non-salient objects.
(a) Images, (b) ground-truth, (c) results of [16], (d) results of [36],
(e) results of our approach. The main attributes of salient objects
in the three images are location (1st row), shape (2nd row) and
color (3rd row), while attributes shared with non-salient objects
are shape (1st row), color (2nd row) and location (3rd row).

In the past decade, extensive efforts have been made to
find a comprehensive and convincing definition of salient
objects. For example, Jiang et al. [[17] proposed that salient
objects are characterized by the uniqueness, focusness, and
objectness. In [10], salient objects were considered to be
unique and have compact spatial distribution, or be distinc-
tive with respect to both their local and global surround-
ings [13[]. Based on these findings, heuristic features can
be designed to identify whether a region [, 24, (16| 144],
a superpixel [19, [14] or a pixel [37l 134} 42| is salient or
not. Typically, these models can achieve impressive perfor-
mance when salient and non-salient objects are remarkably
different. However, in complex scenarios that salient and
non-salient objects may share some visual attributes, mak-
ing them difficult to be separated (see Fig.[I). Although
such scenarios can be partially addressed by training ex-
tremely complex models by using Deep Convolutional Neu-
ral Networks [[15} 12} 21} 22, 125]] or Recurrent Neural Net-
works [26} [20} 38], such deep models are often difficult to
be trained or fine-tuned, Moreover, it is still unclear what vi-
sual attributes contribute the most in separating salient and
non-salient objects due to the ‘black box’ characteristic of
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Figure 2. System framework of the proposed approach.

deep models. As a result, finding what is not a salient ob-
ject is as important as knowing what is a salient object, and
the answer can be helpful for designing better features and
developing better SOD models.

Toward this end, this paper first constructs a new SOD
dataset and performs a comprehensive investigation on the
images included or discarded in the construction process so
as to find a more precise definition on what is and what is
not a salient object. From the discarded images that are
considered as ambiguous and confusing in determining the
salient objects, we find that similar candidates, complex
shape and low objectness are three major reasons that pre-
vent an object being considered as unambiguously salient.
Moreover, from the 10, 000 images included in the dataset,
we find that objects can become salient in diversified ways
that may change remarkably in different scenes, which may
imply that a SOD model should adaptively process various
kinds of scenes for the perfect detection of salient objects
and suppression of distractors.

Inspired by these two findings on what are salient and
non-salient objects, we propose a simple yet effective ap-
proach for image-based SOD by ensembling plenty of lin-
ear exemplar regressors. The system framework of the pro-
posed approach can be found in Fig. Given a testing
image, we first divide it into superpixels and extract a set
of foreground and background seeds with respect to the
boundary prior used in previous works [6] [16] 23| 139, 41]].
Moreover, the locally linear embedding (LLE) algorithm is
adopted to discover the relationship between each superpix-
el and its nearest neighbors in the feature subspace, and such
relationships, together with the selected seeds, are used to
guide the manifold preserving foregroundness propagation
process so as to derive a foregroundness map that is capable
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to roughly pop-out salient objects and suppress non-salient
ones that have many similar candidates. Moreover, we gen-
erate an attention map by using a pre-trained deep fixation
prediction model [29] and extract a set of object propos-
als with high objectness from the input image by using the
Multiscale Combinatorial Grouping algorithm [4]]. With the
foregroundness and attention maps, the testing image can be
characterized by its shape, attention and foregroundness de-
scriptor, and such descriptor are then delivered into a salient
object detector formed by ensembling various linear exem-
plar regressors so as to detect the salient proposals and sup-
press the non-salient ones. Note that each linear exemplar
regressor is trained on a specific training image by using
the same proposal descriptor, while each regressor encodes
a specific way of separating salient objects from non-salient
ones. As a result, their fusion can adaptively handle the
SOD tasks in various scenarios, and the usage of shape de-
scriptor and high-objectness proposals ensure the well sup-
pression of non-salient objects. Extensive experimental re-
sults show that the proposed approach outperforms 9 state-
of-the-art methods on 5 datasets and our new dataset.

The main contributions of this paper are summarized as
follows: 1) We introduce a large SOD dataset with 10, 000
images, which we promise to release so as to provide an ad-
ditional source for training and testing SOD models; 2) We
conduct an investigation on what is and what is not a salient
object in constructing the dataset, based on which an ef-
fective salient object detector is proposed by ensembling
linear exemplar regressors; and 3) we propose to compute
the foregroundness map by using boundary prior and LLE,
which is an effective cue in popping-out salient objects and
suppress non-salient ones.



Figure 3. Images and annotations in XPIE. (a) Scene complexity: simple (top) to complex (bottom), (b) Number of salient objects: single
(top) to multiple (bottom), (c) Object size: small (top) to large (bottom), (d) Object position: center (top) to border (bottom).

2. What is and What is Not a Salient Object

To obtain a comprehensive explanation on what is and
what is not a salient object, a feasible solution is to investi-
gate the whole process in constructing a new SOD dataset
by observing the main characteristics of objects in images
included into or discarded from the dataset. From these ob-
servations, we can infer the key attributes of salient and
non-salient objects as well as the subjective bias that may
inherently exist in image-based SOD datasets.

Toward this end, we construct a large SOD dataset (de-
noted as XPIE) and record all the details in the construction
process. We first collect three kinds of images from three
sources, including Panoramio [30], ImageNet [11], and two
fixation datasets [7) [18]. The collection is fully automatic
to avoid bringing in too much subjective bias. After that,
we resize each image to have a maximum side length of
300 pixels and discard all gray images as well as the col-
or images with minimum side length less than 128 pixels.
Finally, we obtain 29, 600 color images in three image sub-
sets, denoted as Set-P, Set-I and Set-E, respectively. Set-P
contains 8, 800 images of places-of-interest with geograph-
ic information (e.g., GPS and tag), Set-I contains 19, 600
images with object tags, and Set-E contains 1, 200 images
with human fixations.

Given these images, we ask two engineers to annotate
them through two stages. In the first stage, an image is
assigned a binary tag: ‘Yes’ for containing unambiguous
salient objects, and ‘No’ otherwise. After the first stage, we
have 21, 002 images tagged with “Yes” and 8, 598 images
tagged with “No.” In the second stage, these two engineers
are further asked to manually label the accurate boundaries
of salient objects in 10, 000 images tagged with “Yes.” Note
that we have 10 volunteers involved in the whole process for
cross-check the quality of annotations. Finally, we obtain
the binary masks for 10, 000 images. More statistics can be
found in Table[I} As shown in Fig.[3] images in XPIE cover
a variety of simple and complex scenes with different num-
bers, sizes and positions of salient objects. Thus XPIE can
be used as an additional training/testing source in develop-
ing and benchmarking SOD models.
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Table 1. Statistics of the proposed XPIE dataset

Set-P Set-I Set-E  XPIE

# Candidates 8,800 19,600 1,200 29,600
# Yes 2,433 17,875 694 21,002

# No 6,367 1,725 506 8,598

# Annotated 625 8,799 576 10,000

By observing the 10, 000 images tagged with ‘Yes’” and
8,598 images tagged with “No” as well as the explanations
from engineers and volunteers, we conclude three key rea-
sons that an object is considered to be non-salient:

1) Many similar candidates. Some images contain a lot
of candidate objects (i.e., five or more in this study, see
Fig. f[a)) and it is very difficult to determine which ones
are the most salient. In other words, several label ambiguity
may inevitably arise when different subjects manually an-
notate the saliency objects in such images. Although such
ambiguity can be alleviated by incorporating eye-tracking
apparatus [24], the issue is still far from be addressed.

2) Complex shape. The more complex the shape of a ob-
ject is, the less probably it is considered as salient. Note
that an object may have complex shape for having fuzzy or
complex boundaries or being occluded by some other ob-
jects (see Fig.|4{(b)). We also find these phenomena exist in
other datasets like DUT-OMRON [41] and PASCAL-S [24]).

3) Low objectness. Sometimes the most salient region is
considered to be not an ‘object’ due to its semantic attributes
(e.g., the rock and road in Fig.[](c)). This may be caused by
the fact that objects within these semantic categories often
act as background in other images.

From these three reasons, we can also derive a definition
of salient object that can be combined with previous defini-
tions [5]. That is, a salient object should have a limited sim-
ilar distractors, relatively clear and simple shape and high
objectness. Moreover, we find that salient objects can pop-
out for having specific visual attributes in different scenar-
i0s, which implies that a good SOD model should encode
all probable ways that salient objects differ from non-salient
ones and adaptively process all types of scenarios.
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Figure 4. Three reasons that an object is considered as non-salient. (a) Many similar candidates, (b) Complex shape, (c) Low objectness.

3. Estimating Foregroundness Map via Mani-
fold Preserving Propagation

As discussed in Sect. [2] objects with many similar candi-
dates in the same image are likely to be non-salient. In oth-
er words, the inter-object similarities between objects are
useful cues in separating salient and non-salient objects. In-
spired by this fact, we propose to estimate a foregroundness
map to depict where salient objects may reside by using
such inter-object similarity. Toward this end, we first di-
vide an image into a set of nearly regular superpixels using
the SLIC method [2], and the number of superpixels, de-
noted as NV, is empirically set to 200. For a superpixel S;,
we represent it with its CIE LAB color vector ¢; and mean
position vector p,.

Foreground and Background Seeds Selection. Given the
features {c;, p,}, we aim to generate a set of highly reliable
foreground and background seeds. For the sake of simpli-
fication, we adopt an indicator vector y = [yi,...,yn]T
whose component y; € [0,1] corresponds to the fore-
groundness of S;. To estimate y, we first refer to the bound-
ary prior widely, which assume that regions along the image
boundary are more likely to be the background. Inspired
by that, we initialize the indicator y; to O if it falls at im-
age boundary and 1 otherwise. After that, the refined fore-
groundness indicator vector y can be updated by solving
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where N} indicates the indices of superpixels that are ad-

jacent to S;. A, is a constant to incorporate the second s-

moothness term that enforce similar foregroundness scores

at spatially adjacent superpixels. «;; is a positive weight

that measures the color similarity between S; and S;:
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Considering that (I) only consists of quadratic and linear
terms with linear constraints, we can efficiently solving
such a quadratic programming problem by using gradien-
t descent algorithm. Note that only the color difference
is considered in (2Z) since we aim to suppress all probable
background regions that have similar color to the boundary
regions. In practice, we initialize y four times with the left,
top, right and bottom boundaries, respectively. Let yl, ',
y" and jfb be the refined foregroundness indicator, we can
derive the ith component in the final indicator vector as

3)

Based on this y;‘ , we adopt two predefined thresholds, Th;4n
and Tj,,, to get the most reliable foreground/background
seeds. That is, foreground seeds are selected as ;' > Thiqn
and background seeds with ¢} < Tj,,. In experiments, we
empirically set T4, to be twice the mean foregroundness
score of y and T7,,, to be 0.05.

SES AN AN A

Manifold-preserving Foregroundness Propagation. In
selecting foreground seeds, some non-salient objects will
pop-out as well since we only use the simple color contrast-
s. Recall that non-salient objects often have many similar
candidates, we propose to further derive a foregroundness
map via manifold preserving foreground propagation. D-
ifferent from the seed selection step, we adopt the locally
linear embedding (LLE) scheme to guide the propagation
process. As shown in Fig.[5] we aim to maintain the same
relationships (i.e., color and location) between a superpixel
and its nearest neighbors in the generated foregroundness
map. In this manner, large salient objects can pop-out as a
whole (see Fig. [5).

To model the spatial relationship between superpixels,
we need to solve the problem

N
min > " flei = > wies |3+ Ip— Y wiip;l3,
{wig} =
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sty wy=1,Vi=12,... N,
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Figure 5. Foregroundness map estimation via manifold preserving
foregroundness propagation. (a) Input image, (b) Initialized fore-
groundness map for foreground/background seed selection, (c) fi-
nal foregroundness map.

where MK is the indices of the K nearest neighbors of S;,
and we set K = 5 in experiments. In practice, we can
optimize (@) using the method described in [32]]. As aresult,
we can obtain a N x N relationship matrix W = [w;;]
that captures the manifold structure of all superpixels in the
feature space. Based on this matrix, the foregroundness can
be propagated as

min [[§ = WY+ Aie D (3~ 90)°
i€S

(5)
sLO=<y =<1,

where S is the indices of the selected foreground and back-
ground seeds. g; is an indicator which equals to 1 or O if
S; is the selected foreground seed and background seed, re-
spectively. ¥, is the ith component of foregroundness vec-
tor y. In (@), the first term enforces the manifold-preserving
foregroundness propagation, and the second term ensures
the final foregroundness to be consistent with the seed se-
lection results. \;;. controls the balance of the first term and
the second term. The two terms are all squared errors. Thus,
we can obtain the foregroundness vector by least-square al-
gorithms. Finally, the foregroundness vector is converted
to a foregroundness map by assigning the superpixel-based
foregroundness to all pixels it contains.

4. Learning a Salient Object Detector by En-
sembling Linear Exemplar Regressors

4.1. Training Linear Exemplar Regressors

Given the foregroundness map, we can train a salient ob-
ject detector by ensembling linear exemplar regressors. Let
I be the set of training images, G be the ground-truth mask
of an image Z € I. Inspired by the annotation process of
salient objects in [24], we extract a set of object proposal-
s from Z by using the Multiscale Combinatorial Grouping
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algorithm [4], which are denoted as . Moreover, we use
the fixation prediction model proposed in [29] to predict an
attention map (i.e., a fixation density map) that reveals the
most attractive regions. Furthermore, we derive a ground-
truth saliency of a proposal O € Oz as

=Y 6.

O =01 24

(6)

where p is a pixel in O. In training the detectors, we on-
ly select positives from Z with G(O) > 0.7 and negatives
with G(O) < 0.3, which are denoted as (O)% and O7, re-
spectively. After that, we represent each object proposal O
in O and O~ with a heuristic feature vector vp, includ-
ing 14d shape descriptor proposed in [4]] and additional 11d
shape descriptor like center of gravity, width-height-ratio,
orientation, eccentricity, etc. , 27d foregroundness descrip-
tor based on the foregroundness map and 27d attention de-
scriptor based on the attention map (as in [24]). Finally,
each object proposal O is represented by a 79d descriptor
vVo.

With these feature vectors, a linear exemplar regressor
¢(v) can be trained to separate salient and non-salient ob-
jects on a specific image by minimizing

1
min o |[wl3 + C* Y lo+C > <o
0e0+ 0ec0~

st.YO €O, wivo +b>1— (o, (o >0,
VO€©77WTVO+b§C(’)717 COZO;

)

where CT and C~ are empirically set to 1/|O%| and
1/]0~| to balance the influence of probable salient objects
and distractors. w and b are the parameters of ¢(v).

4.2. Ensembling for Salient Object Detection

Given all linear exemplar regressors, a proposal O
in a testing image gains |I| saliency scores, denoted as
{#z(vo)|Z € T}. However, the scores of each linear ex-
emplar regressor may fall in different dynamic ranges so
that their direct fusion will lead to inaccurate saliency maps
(see Fig. [6fc)-(d)).

To fuse these predictions, we propose an enhancement
operation on {¢z(O)}, which increases the probability to
adopt the most relevant linear exemplar regressors and de-
creases the influence of irrelevant ones. The enhancement
adopts a sigmoid function as

1

f(ﬂj) = 1+ e—a(z—b)

®)
where © € {¢7(O)}. a, b are predefined parameters to con-
trol the degree of enhancement so that regressors that output
intermediate scores will be inhibited (e.g., x = 0.5), while
regressors with high and low scores will be maintained (e.g.,



Figure 6. Different fuslon strategy for SOD. (a) Image, (b) ground—
truth, (c) direct fusion by computing the maximum saliency value,
(d) direct fusion by computing the mean saliency value, (e) en-
hanced fusion by computing the mean saliency value after an en-
hancement operation using a sigmoid function.

xz = 0.0 or z = 1.0). In this manner, we can calibrate all
regressors and emphasize more on the ones that output con-
fident predictions on an object proposal. In this manner,
regressors with the capability of separating salient and non-
salient objects in this scene can be emphasized, making the
ensembled model scene adaptive. Finally, we sum up the
enhanced saliency scores to derive the saliency at a pixel p:

Y Epe0)- > flor(vo)),

0e0 Zel

Sal(p ©))

|©\

where £(p € O) is an indicator function which equals to 1 if
p € O and 0 otherwise. After that, we normalize the pixel-
wise saliency into the dynamic range of [0, 1] and adopt the
exponential operations proposed in [42]] to enhance the con-
trast of saliency maps, followed by a morphological opera-
tion to obtain a smooth salient object (see Fig. [6).

5. Experiments

In experiments, we compare our approach, denoted as
ELE (i.e., Ensembling Linear Exemplars), with 9 state-of-
the-art methods, including MST [36], BL [35], BSCA [31],
MBS [42], RBD [43], DRFI [16], MR [41], DSR [23]] and
GS [39]. Moreover, we extend ELE by replacing the nega-
tive instance used in training each linear exemplar regressor
with a huge bag of negatives collected from all training im-
ages, and the extend model is denoted as ELE+.

For the 11 models, comparisons are conducted over 5
public datasets and our new dataset XPIE, including:

1) SED1 [3]] contains 100 images with a dominant salient
object per image.

2) PASCAL-S [24]) contains 850 natural images annotated
with pre-segmented objects and eye-tracking data.

3) ECSSD [40] contains 1, 000 structurally complex images
manually annotated by 5 subjects.
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4) MSRA-B [27]] contains 5,000 images and we selec-
t 2,500 images for training and 500 images for validation
in training linear exemplar regressors. This is also the same
setting used in [[16]. Only the rest 2000 images are used for
testing all the models.

5) THURI15K [9] contains 6,233 images about butterfly,
coffee mug, dog jump, giraffe, and plane.

6) XPIE contains 10, 000 images with pixel-wise masks of
salient objects. It covers many complex scenes with differ-
ent numbers, sizes and positions of salient objects.

In the comparisons, we adopt the F-measure curves,
adaptive F-measure, weighted F-measure and mean abso-
lute error (MAE) as the evaluation metrics. In computing
F-measure curves, the precision and recall are first comput-
ed by binarizing the saliency maps with a threshold sliding
from O to 255 and compare the binary maps with ground-
truth maps. At each threshold, F-measure is computed as

(1 + 3?)-Precision-Recall
(32-Precision + Recall

F-measure = (10)

where [ is set to 0.3 as in [[1]. Besides, we report adaptive
F-measure (FM) using an adaptive threshold for generating
a binary saliency map. The adaptive threshold is computed
as twice the mean of a saliency map. Meanwhile, the unified
weighted F-measure (WFM, see [28]]) is computed to reflect
the overall performance. In addition, MAE is calculated as
the average absolute per-pixel difference between the gray-
scale saliency maps and the ground-truth saliency maps.

5.1. Comparison with State-of-the-art Methods

The performance scores of our approaches and the other
9 methods are shown in Table 2l The curves of F-measure
are shown in Fig. [8] and we also show some representative
results in Fig. [/l From these results, we find that ELE and
ELE+ outperform the other 9 approaches on all datasets and
achieve the lowest MAE and the highest wFM.

The success of our approach can be explained from three
aspects. First, the investigation about what is and what is
not a salient object provides useful cues in designing effec-
tive features for separating salient and non-salient objects.
In particular, the foregroundness map computed via mani-
fold preserving propagation can inhibit non-salient objects
with many similar candidates. Second, with the finding that
non-salient objects have low objectness, we extract object
proposals containing high objectness that are more tightly
correlated with the semantic attributes of objects. Actually,
the proposal-based framework is similar to the way that hu-
man perceives salient objects. Third, various ways of sep-
arating salient and non-salient objects in diversified scenes
are isomorphically represented with the exemplar-based lin-
ear regressors. The enhancement-based fusion strategy for
combining exemplar scores makes the learned salient de-
tector emphasize more on the most relevant linear exemplar



Table 2. Comparison of quantitative results including adaptive F-measure (FM, larger is better), weighted F-measure (WFM, larger is better)
and MAE(smaller is better). The best three results are shown in red, blue, and , respectively.

| Dataset | Metric | GS | DSR [ MR | DRFI | RBD | MBS | BSCA | BL [ MST | ELE | ELE+ |

MAE | 0.176 | 0.160 | 0.153 | 0.164 | 0.143 | 0.172 | 0.154 | 0.185 0.105 | 0.108

SEDI1 FM | 0.751 | 0.803 0.817 | 0.803 | 0.805 | 0.819 | 0.808 | 0.804 | 0.849 | 0.854
wFM | 0.571 | 0.616 | 0.626 | 0.598 | 0.652 | 0.579 | 0.611 | 0.555 0.773 | 0.767

MAE | 0.221 | 0.205 | 0.221 | 0.219 | 0.199 | 0.220 | 0.222 | 0.247 0.161 | 0.159

PASCAL-S FM | 0.601 | 0.628 | 0.649 0.639 | 0.642 | 0.640 | 0.632 | 0.660 | 0.692 | 0.710
wFM | 0.414 | 0420 | 0.416 | 0.418 | 0.449 | 0.366 | 0.432 | 0.400 0.576 | 0.581

MAE | 0.255 | 0.226 | 0.237 | 0.239 | 0.225 | 0.245 | 0.233 | 0.262 0.183 | 0.183

ECSSD FM | 0.624 | 0.687 | 0.697 0.679 | 0.668 | 0.697 | 0.691 | 0.688 | 0.740 | 0.749
wFM | 0.435 | 0.490 | 0.478 | 0.472 | 0.490 | 0.432 | 0.495 | 0.449 0.649 | 0.650

MAE | 0.144 | 0.119 | 0.127 | 0.139 | 0.110 | 0.140 | 0.130 | 0.171 0.069 | 0.071

MSRA-B FM | 0.754 | 0.795 | 0.826 0.811 | 0.801 | 0.809 | 0.807 | 0.812 | 0.853 | 0.861
wFM | 0.563 | 0.629 | 0.613 | 0.570 | 0.650 | 0.548 | 0.601 | 0.520 0.797 | 0.795

MAE | 0.176 | 0.142 | 0.178 | 0.167 | 0.150 | 0.159 | 0.182 | 0.220 0.121 | 0.111

THURI5K FM | 0.518 | 0.579 | 0.586 0.566 | 0.595 | 0.574 | 0.575 | 0.607 | 0.630 | 0.654
wFM | 0.370 | 0.422 | 0.378 | 0.399 | 0.421 | 0.366 | 0.387 | 0.341 0.549 | 0.567

MAE | 0.181 | 0.155 | 0.177 | 0.160 | 0.149 | 0.162 | 0.181 | 0.213 0.128 | 0.121

XPIE FM | 0.612 | 0.655 | 0.672 0.665 | 0.670 | 0.658 | 0.653 | 0.675 | 0.701 | 0.722
wFM | 0.435 | 0.476 | 0.451 | 0.478 | 0.503 | 0.515 | 0.455 | 0.407 0.603 | 0.611

>

Figure 7. Representative results of our approach (ELE and ELE+) and 9 state-of-the-art methods.
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regressors, while the regressors making ambiguous predic- In the first experiment, we check the effectiveness of the
tions will be somehow ignored. In this manner, the saliency generated foregroundness maps by treating them as salien-
maps become less noisy. cy maps. In this experiment, we compare the foreground-
. ness maps with results from similar models like MST [36]],

5.2. Performance Analysis RBD [43] and MR [41]]. we find that such foregroundness
We conduct four small experiments on the 1000 testing maps have a best weighted F-measure of 0.602 among them,
images of ECSSD to further validate the effectiveness of the while the weighted F-measure scores of MST, RBD and MR
proposed approach. reach only 0.578, 0.490 and 0.478, respectively. This val-
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Figure 8. The F-measure curves of our approaches (ELE and ELE+) and 9 state-of-the-art methods over 6 datasets (larger is better).

idates that the proposed foregroundness maps are very ef-
fective and contribute a lot to the impressive performance
of ELE and ELE+.

In the second experiment, we compare the heuristic fea-
tures and deep features extracted by deep models. In this
experiment, we use GoogleNet in [33]] to compute an 1024
feature descriptor for each proposal. We find that with the
same training processing, the weighted F-measure of ELE
drops sharply from 0.649 to 0.578. This may be caused
by the over-fitting risk in using the high-dimensional CNN
features (e.g., 1024d, 2048d or 4096d), especially when the
amount of training data is very small.

In the third experiment, we test various fusion strategies
of exemplar scores. We compare 3 different fusion ways
as shown in Fig. |§| (b),(c) and (d) respectively. We find that
the weighted F-measure of using the max and mean value of
raw exemplar scores as the final saliency value of a proposal
is 0.540 and 0.588, while the weighted F-measure of using
enhancement-based fusion is 0.649. This indicates that the
enhancement operation on raw exemplar scores is useful in
selecting the most relevant exemplar linear regressors and
suppressing irrelevant regressors that tend to output medium
responses to all candidates.

In the four experiment, we compare ELE and ELE+. The
quantitative results in Table[2]show that using huge negative
bags has positive impact to the performance of each linear
exemplar regressor. Actually, saliency is a relative concep-
t and with the training data from only one image we can
simply infer how to separate specific salient objects from
specific non-salient ones. On the contrary, the extended bag
of negatives can tell us more about how to separate spe-
cific salient objects from massive non-salient ones. In this
manner, the generalization ability of the detector can be im-
proved, leading to better performance.
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6. Conclusions

Knowing what is and what is not a salient object is im-
portant for designing better features and developing better
models for image-based SOD. Toward this end, this paper
first constructs a new SOD dataset and explores how salien-
t objects in the selected images behave and how the non-
salient objects in the discard images look like. By inves-
tigating the visual attributes of salient and non-salient ob-
jects, we find that non-salient objects often have many sim-
ilar candidates, complex shape and low objectness, while
salient objects can pop-out for having diversified attributes.

Inspired by the two findings derived from the construc-
tion process of a new dataset, we compute a novel fore-
groundness map by manifold-preserving foregroundness
propagation, which can be used to extract effective features
for separating salient and non-salient objects. Moreover,
we train an effective salient object detector by ensembling
plenty of linear exemplar regressors. Experimental results
show that the proposed detector outperforms 9 state-of-the-
art methods.

In the future work, we will extend the proposed approach
in two ways. Considering the highly flexible architecture
of the ensembling-based framework, we will try to design
a scheme with which the detector can gradually evolve by
learning from incremental training data. Moreover, more
features will be incorporated into the framework, especially
the high-level features such as semantic descriptor extracted
by pre-trained models.
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