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Abstract

Typically, a salient object detection (SOD) model faces
opposite requirements in processing object interiors and
boundaries. The features of interiors should be invariant
to strong appearance change so as to pop-out the salient
object as a whole, while the features of boundaries should
be selective to slight appearance change to distinguish
salient objects and background. To address this selectivity-
invariance dilemma, we propose a novel boundary-aware
network with successive dilation for image-based SOD. In
this network, the feature selectivity at boundaries is en-
hanced by incorporating a boundary localization stream,
while the feature invariance at interiors is guaranteed with
a complex interior perception stream. Moreover, a tran-
sition compensation stream is adopted to amend the prob-
able failures in transitional regions between interiors and
boundaries. In particular, an integrated successive dilation
module is proposed to enhance the feature invariance at in-
teriors and transitional regions. Extensive experiments on
six datasets show that the proposed approach outperforms
16 state-of-the-art methods.

1. Introduction

Salient object detection (SOD), which aims to detect and
segment objects that can capture human visual attention, is
an important step before subsequent vision tasks such as ob-
ject recognition [31], tracking [13] and image parsing [18].
To address the SOD problem, hundreds of learning-based
models [15, 36, 39, 7, 48, 11] have been proposed in the
past decades, among which the state-of-the-art deep mod-
els [36, 7] have demonstrated impressive performance on
many datasets [42, 43, 24, 21, 34, 39, 10]. However, there
still exist two key issues that need to be further addressed.
First, the interiors of a large salient object may have large
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Figure 1. Different regions of salient objects require different fea-
tures. (a)(b) Features of interiors should be invariant to large ap-
pearance change to detect the salient object as a whole; (c)(d) fea-
tures at boundaries should be selective to distinguish the slight dif-
ferences between salient objects and background regions. Images
and ground-truth masks are from [42]. Results are generated by
C2SNet [23], PAGRN [50] and our approach.

appearance change, making it difficult to detect the salient
object as a whole (see Fig. 1(a)(b)). Second, the bound-
aries of salient objects may be very weak so that they cannot
be distinguished from the surrounding background regions
(see Fig. 1(c)(d)). Due to these two issues, SOD remains a
challenging task even in the deep learning era.

By further investigating these two issues at object in-
teriors and boundaries, we find that the challenge may be
mainly from the selectivity-invariance dilemma [19]. In the
interiors, the features extracted by a SOD model should
be invariant to various appearance changes such as size,
color and texture. Such invariant features ensure that the
salient object can pop-out as a whole. However, the fea-
tures at boundaries should be sufficiently selective at the
same time so that the minor difference between salient ob-
jects and background regions can be well distinguished. In
other words, different regions of a salient object poses dif-
ferent requirements for a SOD model, and such dilemma
actually prevents the perfect segmentation of salient objects
with various sizes, appearances and contexts.

http://cvteam.net


Figure 2. The framework of our approach. We first use ResNet-50 to extract common features for three streams. The boundary localization
stream uses multi-level features and a simple network to detect salient boundaries with high selectivity, while the interior perception
stream uses single-level features and a complex network to guarantee invariance in salient interiors. Their output features are used to form
two confidence maps of selectivity and invariance, based on which a transition compensation stream is adopted to amend the probable
failures that are likely to occur in the transition regions between boundaries and interiors. These three streams are concatenated to form a
boundary-aware feature mosaic map so that the salient object can pop-out as a whole with clear boundaries.

To break out of this dilemma, a feasible solution is
to adopt different feature extraction strategies at object
interiors and boundaries. Inspired by that, we propose
a boundary-aware network with successive dilation for
image-based SOD. As shown in Fig. 2, the network first ex-
tracts common visual features and then deliver them into
three separate streams. Among these three streams, the
boundary localization stream is a simple subnetwork that
aims to extract selective features for detecting the bound-
aries of salient objects, while the interior perception stream
emphasizes the feature invariance in detecting the salient
objects. In addition, a transition compensation stream is
adopted to amend the probable failures that may occur in
the transitional regions between interiors and boundaries,
where the feature requirement gradually changes from in-
variance to selectivity. Moreover, an integrated successive
dilation module is proposed to enhance the capability of the
interior perception and transition compensation streams so
that they can extract invariant features for various visual pat-
terns. Finally, the output of these three streams are adap-
tively fused to generate the masks of salient objects. Exper-
imental results on six public benchmark datasets show that
our approach outperforms 16 state-of-the-art SOD models.
Moreover, our approach demonstrates impressive capability
in accurately segmenting salient boundaries at fine scales.

The main contributions of this paper include: 1) we
revisit the problem of SOD from the perspective of
selectivity-invariance dilemma, which may be helpful to de-
velop new models; 2) we propose a novel boundary-aware
network for salient object detection, which consistently

outperforms 16 state-of-the-art algorithms on six datasets;
3) we propose an integrated successive dilation module that
can enhance the capability of extracting invariant features.

2. Related Work

Hundreds of image-based SOD methods have been pro-
posed in the past decades. Early methods mainly adopted
hand-crafted local and global visual features as well as
heuristic saliency priors such as the color difference [1], dis-
tance transformation [33] and local/global contrast [16, 8].
More details about the traditional methods can be found in
the survey [2]. In this review, we mainly focus on the latest
deep models in recent three years.

Lots of these deep models are devoted to fully utilizing
the feature integration to enhance the performance of neural
networks [20, 22, 25, 36, 48, 29, 49, 50, 47]. For example,
Zhang et al. [50] proposed an attention guided network to
selectively integrates multi-level information in a progres-
sive manner. Wang et al. [36] proposed a pyramid pooling
module and a multi-stage refinement mechanism to gather
contextual information and stage-wise results, respectively.
Zhang et al. [48] adopted a framework to aggregate multi-
level convolutional features into multiple resolutions, which
were then combined to predict saliency maps in a recursive
manner. Luo et al. [29] proposed a simplified convolutional
neural network by combining global and local information
through a multi-resolution 4 × 5 grid structure. Zhang et
al. [49] utilized the deep uncertain convolutional features
and proposed a reformulated dropout after specific convolu-



tional layers to construct an uncertain ensemble of internal
feature units. Different with them, we propose an integrated
successive dilation module to capture richer contextual in-
formation to produce features that account for interior in-
variance and introduce skip connections from low-level fea-
tures to promote selective representations of boundaries.

In addition, many models [37, 7, 3, 6, 46, 38, 23] com-
prehend saliency detection task by relating other vision
tasks. Chen et al. [6] proposed reverse attention mechanism
which is inspired from human perception process by using
top information to guide bottom-up feed-forward process
in a top-down manner. Chen et al. [7] incorporated human
fixation with semantic information to simulate the human
annotation process for salient objects. Chen and Li [3] pro-
posed a complementarity-aware network to fuse both cross-
model and cross-level features to solve saliency detection
task with depth information. Wang et al. [38] proposed to
learn the local contextual information for each spatial posi-
tion to refine boundaries. Li et al. [23] considered contours
as useful priors and proposed to facilitate feature learning
in SOD by transferring knowledge from an existing con-
tour detection model. Our work differs with them by fusing
the boundary and interior features of salient objects with a
compensation mechanism and an adaptive manner.

3. The Proposed Approach
The selectivity-invariance dilemma in SOD indicates

that the boundaries and interiors of salient objects require
different types of features. Inspired by that, we propose a
boundary-aware network for saliency detection (see Fig. 2
for the system framework). The network first extract com-
mon features, which are then processed with three separate
streams. The outputs of these streams are then fused to gen-
erate the final masks of salient objects in a boundary-aware
feature mosaic selection manner. Details of the proposed
approach are descried as follows.

3.1. Common Feature Extraction

As shown in Fig. 2, the boundary-aware network starts
with ResNet-50 [12]. As a common feature extractor, we
remove the last global pooling and fully connected layers
and use only the five residual blocks. For the sake of sim-
plification, the subnetworks in these five blocks are denoted
as θi(πi), i ∈ {1, . . . , 5}, where πi is the set of parame-
ters of θi. Note that the input of θi(πi) is the output of
θi−1(πi−1),∀ i = 2, . . . , 5, and we omit the input for the
sake of simplification. In addition, the strides of all convo-
lutional layers in θ4 and θ5 are set to 1 to avoid the over
downsample of feature maps. As in [45], we enlarge the
receptive fields by using the dilation of 2 and 4 in all con-
volutional layers of θ4 and θ5, respectively. Finally, for a
H ×W input image, the subnetwork θ5 outputs a H

8 ×
W
8

feature map with 2048 channels.

Figure 3. The SOD results from the combination of three streams.
(a) Image; (b) ground-truth; (c) only interior perception stream;
(d) interior perception and boundary localization streams; (e) three
streams. We can see that interior perception stream may fail near
object boundaries due to the emphasis of invariance, while such
vague boundaries can be corrected by incorporating the boundary
localization stream with the emphasis of selectivity. In addition,
the probable failures of these two streams can be amended by the
transition compensation stream.

3.2. Boundary-aware SOD with Three Streams

Given the common features, we use three streams for
boundary localization, interior perception and transition
compensation, respectively. The boundary stream is in-
spired by the work of [41], which is a simple subnetwork
φB(πB) that aggregates multi-level common features and
fuses them by upsampling and concatenating to obtain the
final boundary predictions. The input of this subnetwork
is the concatenation of features from {θi(πi)}5i=1. For the
feature map of each θi(πi), we add two convolution layers
with 128 kernels of 3×3 and one 1×1 kernel, respectively.
These two layers are used to squeeze the common features,
which are then upsampled to H ×W . After the concatena-
tion, we add an extra layer with one 1 × 1 kernel to output
a single channel H ×W feature map φB(πB). A sigmoid
layer is then used to generate a selectivity confidence map
that is expected to approximate the boundary map of salient
objects (denoted as GB) by minimizing the loss

LB = E(Sig(φB(πB)), GB), (1)

where Sig(·) is the sigmoid function and E(·, ·) means the
cross-entropy loss function. By taking multi-level features
as the input and using only simple feature mapping sub-
networks, the boundary localization stream demonstrates a
strong selectivity at object boundaries.

Different from the boundary localization stream, the in-
terior perception stream φI(πI) emphasizes feature invari-
ance inside large salient objects. Therefore, it takes less
input features and uses a more complex subnetwork. Its
input is the output of the last common feature extractor
θ5(π5), and the output is a single-channel H ×W feature
map φI(πI). Similarly, we can use the sigmoid operation
to derive an invariance confidence map, which is expected



to approximate the ground-truth mask of salient objects G
by minimizing the cross-entropy loss:

LI = E(Sig(φI(πI)), G), (2)

Note that an integrated successive dilation (ISD) module is
used in this stream to map the input to the output by per-
ceiving local contexts at successive scales, which will be
introduced in the next subsection.

As shown in Fig. 3, the awareness of boundaries can be
enhanced by handling the boundaries and interior regions
with two separate streams: one uses multi-level features
and a simple network to emphasize selectivity, the other one
uses single-level features and a complex network to enhance
invariance. However, the combination of these two streams
may still have failures, especially for the transitional regions
between interiors and boundaries that require a balance of
selectivity and invariance. To this end, we adopt a tran-
sition compensation stream φT (πT ) to adaptively amend
these failures by compensating features in the transitional
regions. Different from the first two streams, φT (πT ) takes
the element-wise summation of the two-level features (one
high-level θ5(π5) and one low-level θ2(π2)) as the input.
In this manner, localization-aware fine-level features and
semantic-aware coarse-level ones can jointly enrich the rep-
resentation power within transition regions. Since θ2(π2)
has the resolution H

4 ×
W
4 , we upsample θ5(π5) to H

4 ×
W
4

after two pre-processing layers using 256 kernels of 3 × 3
and 256 kernel of 1 × 1, respectively. Based on these fea-
tures, an ISD module with medium complexity is used to
generate a transitional feature representation map that me-
diates both selectivity and invariance, which ensures that
detailed structures of salient objects to be correctly detected.

Instead of approximating certain “ground-truth”, the pa-
rameters of the transition compensation stream are super-
vised by the feedback from both the ground-truth masks of
salient objects and the predictions of boundary and interior
streams. Suppose that this stream also outputs aH×W fea-
ture map φT after upsampling, we combine it with the fea-
ture maps φB and φI . Note that features in φB, φI and φT
emphasize selectivity, invariance and their tradeoff, respec-
tively. As a result, the direct element-wise summation or
concatenation may incorporate unexpected noises as shown
in Fig. 4. To reduce these noises, we adopt a boundary-
aware mosaic approach that assigns different strengths to
different regions, guided by confidence confidence maps
from boundary and interior streams. This approach ensures
a well-learned combination of φT and φB as well as φI by
properly balancing selectivity and invariance. Let M be the
feature mosaic map, we combine the three maps according
to the selectivity confidence map MB = Sig(φB) and the
invariance confidence map MI = Sig(φI):

M =φB ⊗ (1−MI)⊗MB + φI ⊗MI ⊗ (1−MB)
+φT ⊗ (1−MI)⊗ (1−MB),

(3)

Figure 4. Results of different combinations of three streams φB,
φI and φT . (a) Image; (b) ground-truth; (c) element-wise summa-
tion; (d) concatenation; (e) our mosaic approach.

where ⊗ denotes the element-wise product between two
matrices. We can see that the first term emphasizes selective
features φB at the locations with high selectivity and low
invariance confidences, while the second term emphasizes
invariant features φI at the locations with high invariance
and low selectivity confidence. For the other locations with
medium selectivity and invariance confidences, the transi-
tional features φT will be added to correct the features. In
other words, the transition stream actually learns to approx-
imate the uncertain regions in the other two streams by pro-
viding feature compensations. After that, we can derive fi-
nal saliency map as Sig(M) by minimizing the loss

L0 = E(Sig(M), G), (4)

which indirectly supervises the training process of φT (πT ).
By taking the losses of Eqs. (1), (2) and (4), the overall
learning objective can be formulated as

min
{πi}5i=1,πB,πI ,πT

L0 + LB + LI . (5)

From Eq. (5), we can see that the parameters {πi}5i=1 and
πT are supervised by the three losses, while the parameters
πB, πI are supervised by two losses. Note that the bound-
ary information is used in L0, LB, and the generation of
the feature mosaic map M is also guided by the selectivity
confidence map, making the whole network aware of object
boundaries.

3.3. Integrated Successive Dilation Module

In the interior perception stream and the transition com-
pensation streams, the key requirement is to extract invari-
ant features for a region embedded in various contexts. To
enhance such capability, we propose an integrated succes-
sive dilation module (named as ISD) to efficiently aggregate
contextual information at a sequence of scales for the pur-
pose of enhancing the feature invariance.

The ISD module withN parallel branches with skip con-
nections is denoted as ISD-N , and we show the structure
of ISD-5 in Fig. 5 as an example. The first layer of each



Figure 5. Structure of the integrated successive dilation (ISD)
module. 1 ×1 and 3 ×3 means the convolutional kernel size, and
rate represents the dilation rate in dilated convolution.

branch is a convolutional layer with 1×1 kernels that is used
for channel compression. The second layer of each branch
adopts dilated convolution, in which the dilation rates start
from 1 in the first branch and double in the subsequent
branch. In this manner, the last branch has a dilation rate
of 2N−1. By adding intra- and inter-branch short connec-
tions, the feature map generated by a branch layer actually
integrates the perception results of the previous branch and
further handle them with larger dilation. In this way, the
feature map from the first branch of the second layer is also
encoded in the feature maps of subsequent branches, which
actually gets processed by successive dilation rates. In other
words, an ISD-N module gains the capability of perceiving
various local contexts with the smallest dilation rate of 1
and the largest dilation rate of 2N − 1. After that, the third
and the forth layers adopt 1× 1 kernels to integrate feature
maps formed under various dilation rates. In practice, we
use ISD-5 in the interior perception stream and ISD-3 in the
transition compensation streams.

4. Experiments and Results
4.1. Experimental Setup

Datasets. To evaluate the performance of the pro-
posed approach, we conduct experiments on six bench-
mark datasets [42, 43, 24, 21, 34, 39]. Details of these
datasets are described briefly as follows: ECSSD [42] con-
tains 1,000 images with complex structures and obvious
semantically meaningful objects. DUT-OMRON [43] con-
sists of 5,168 complex images with pixel-wise annotations
of salient objects and all images are downsampled to a max-
imal side length of 400 pixels. PASCAL-S [24] includes
850 natural images that are pre-segmented into objects or
regions and free-viewed by 8 subjects in eye-tracking tests
for salient object annotation. HKU-IS [21] comprises 4,447
images and lots of images contain multiple disconnected

salient objects or salient objects that touch image bound-
aries. DUTS [34] is a large scale dataset containing 10533
training images (denoted as DUTS-TR) and 5019 test im-
ages(denoted as DUTS-TE). The images are challenging
with salient objects that occupy various locations and scales
as well as complex background. XPIE [39] has 10000 im-
ages covering a variety of simple and complex scenes with
salient objects of different numbers, sizes and positions.

Evaluation Metrics. We adopt mean absolute error
(MAE), F-measure (Fβ) score, weighted F-measure (Fwβ )
score [30], Precision-Recall (PR) curve and F-measure
curve as our evaluation metrics. MAE reflects the aver-
age pixel-wise absolute difference between the estimated
and ground-truth saliency maps. In computing Fβ , we nor-
malize the predicted saliency maps into the range of [0,
255] and binarize the saliency maps with a threshold sliding
from 0 to 255 to compare the binary maps with ground-truth
maps. At each threshold, Precision and Recall can be com-
puted. Fβ is computed as:

Fβ =
(1 + β2) · Precision ·Recall
β2 · Precision+Recall

. (6)

where we set β2 = 0.3 to emphasize more on Precision than
Recall as suggested in [1]. Then we can plot the PR curve
and F-measure curve based on all the binary maps over all
saliency maps in a given dataset.

We report Fβ using an adaptive threshold for generating a
binary saliency map and the threshold is computed as twice
the mean of a saliency map. Besides, Fwβ is computed to
reflect the overall performance (refer to [30] for details).

Training and Inference. We use standard stochastic
gradient descent algorithm to train the whole network end-
to-end with the cross-entropy losses between estimated and
ground-truth maps. In the optimization process, the param-
eter of common feature extractor is initialized by the pre-
trained ResNet-50 model [12], whose learning rate is set to
5 × 10−9 with a weight decay of 0.0005 and momentum
of 0.9. The learning rates of the rest layers in our network
are set to 10 times larger. Besides, we employ the “poly”
learning rate policy for all experiments similar to [28].

We train our network on DUTS-TR [34] as used in [38,
26, 36]. For a more comprehensive demonstration, we also
trained our network with VGG-16 [32] on MSRA10K [8]
as used in [49, 48, 7, 23] and on DUTS-TR as done in
[50, 26]. The training images are not done with any spe-
cial treatment except the horizontal flipping. The training
process takes about 15 hours and converges after 200k itera-
tions with mini-batch of size 1. During testing, the proposed
network removes all the losses, and each image is directly
fed into the network to obtain its saliency map without any
pre-processing. The proposed method runs at about 13 fps
with about 400 × 300 resolution on our computer with a
3.60GHz CPU and a GTX 1080ti GPU.



Table 1. Performance of 16 state-of-the-arts and the proposed method on six benchmark datasets. Smaller MAE, larger Fwβ and Fβ
correspond to better performance. The best results of different backbones are in blue and red fonts. “-” means the results cannot be
obtained and “†” means the results are post-processed by dense conditional random field (CRF) [17]. Note that the backbone of PAGRN is
VGG-19 [32] and the one of R3Net is ResNeXt-101 [40]. MK: MSRA10K [8], DUTS: DUTS-TR [34], MB: MSRA-B [27].

Models
Training ECSSD DUT-OMRON PASCAL-S HKU-IS DUTS-TE XPIE
dataset MAE Fwβ Fβ MAE Fwβ Fβ MAE Fwβ Fβ MAE Fwβ Fβ MAE Fwβ Fβ MAE Fwβ Fβ

VGG-16 backbone [32]
KSR [37] MB 0.132 0.633 0.810 0.131 0.486 0.625 0.157 0.569 0.773 0.120 0.586 0.773 - - - - - -

HDHF [22] MB 0.105 0.705 0.834 0.092 0.565 0.681 0.147 0.586 0.761 0.129 0.564 0.812 - - - - - -
ELD [20] MK 0.078 0.786 0.829 0.091 0.596 0.636 0.124 0.669 0.746 0.063 0.780 0.827 0.092 0.608 0.647 0.085 0.698 0.746
UCF [49] MK 0.069 0.807 0.865 0.120 0.574 0.649 0.116 0.696 0.776 0.062 0.779 0.838 0.112 0.596 0.670 0.095 0.693 0.773

NLDF [29] MB 0.063 0.839 0.892 0.080 0.634 0.715 0.101 0.737 0.806 0.048 0.838 0.884 0.065 0.710 0.762 0.068 0.762 0.825
Amulet [48] MK 0.059 0.840 0.882 0.098 0.626 0.673 0.099 0.736 0.795 0.051 0.817 0.853 0.085 0.658 0.705 0.074 0.743 0.796

FSN [7] MK 0.053 0.862 0.889 0.066 0.694 0.733 0.095 0.751 0.804 0.044 0.845 0.869 0.069 0.692 0.728 0.066 0.762 0.812
C2SNet [23] MK 0.057 0.844 0.878 0.079 0.643 0.693 0.086 0.764 0.805 0.050 0.823 0.854 0.065 0.705 0.740 0.066 0.764 0.807

RA [6] MB 0.056 0.857 0.901 0.062 0.695 0.736 0.105 0.734 0.811 0.045 0.843 0.881 0.059 0.740 0.772 0.067 0.776 0.836
Picanet [26] DUTS 0.046 0.865 0.899 0.068 0.691 0.730 0.079 0.775 0.821 0.042 0.847 0.878 0.054 0.747 0.770 0.053 0.799 0.841
PAGRN [50] DUTS 0.061 0.834 0.912 0.071 0.622 0.740 0.094 0.733 0.831 0.048 0.820 0.896 0.055 0.724 0.804 - - -
RFCN [35] MK 0.067 0.824 0.883 0.077 0.635 0.700 0.106 0.720 0.802 0.055 0.803 0.864 0.074 0.663 0.731 0.073 0.736 0.809
DSS† [14] MB 0.052 0.872 0.918 0.063 0.697 0.775 0.098 0.756 0.833 0.040 0.867 0.904 0.056 0.755 0.810 0.065 0.784 0.849

BANet MK 0.046 0.873 0.907 0.062 0.705 0.742 0.082 0.780 0.832 0.041 0.851 0.883 0.048 0.766 0.791 0.052 0.808 0.853
BANet DUTS 0.041 0.890 0.917 0.061 0.719 0.750 0.079 0.794 0.839 0.037 0.869 0.893 0.046 0.781 0.805 0.048 0.822 0.862

ResNet-50 backbone [12]
SRM [36] DUTS 0.054 0.853 0.902 0.069 0.658 0.727 0.086 0.759 0.820 0.046 0.835 0.882 0.059 0.722 0.771 0.057 0.783 0.841

Picanet [26] DUTS 0.047 0.866 0.902 0.065 0.695 0.736 0.077 0.778 0.826 0.043 0.840 0.878 0.051 0.755 0.778 0.052 0.799 0.843
DGRL [38] DUTS 0.043 0.883 0.910 0.063 0.697 0.730 0.076 0.788 0.826 0.037 0.865 0.888 0.051 0.760 0.781 0.048 0.818 0.859

R3† [9] MK 0.040 0.902 0.924 0.063 0.728 0.768 0.095 0.760 0.834 0.036 0.877 0.902 0.057 0.765 0.805 0.058 0.805 0.854
BANet DUTS 0.035 0.908 0.929 0.059 0.736 0.763 0.072 0.810 0.849 0.032 0.886 0.905 0.040 0.811 0.829 0.044 0.839 0.873

Figure 6. The PR curves and F-measure curves of 16 state-of-the-arts and our approach are listed across six benchmark datasets.

4.2. Comparisons with the State-of-the-Arts

We compare our approach denoted as BANet with 16
state-of-the-art methods, including KSR [37], HDHF [22],
ELD [20], UCF [49], NLDF [29], Amulet [48], FSN [7],
SRM [36], C2SNet [23], RA [6], Picanet [26], PAGRN [50],
R3Net [9], DGRL [38], RFCN [35] and DSS [14]. For fair
comparison, we obtain the saliency maps of these methods
from authors or the deployment codes provided by authors.

Quantitative Evaluation. The proposed approach is
compared with 16 state-of-the-art saliency detection meth-
ods on six datasets. The comparison results are shown
in Tab.1 and Fig. 6. From Tab.1, we can see that our
method consistently outperforms other methods across all

the six benchmark datasets. It is worth noting that Fwβ of
our method is significantly better compared with the second
best results on PASCAL-S (0.810 against 0.788), DUTS-
TE (0.811 against 0.765) and XPIE (0.839 against 0.818),
and have similar improvements on the other datasets. Fβ
also has obvious improvement on all the datasets except
DUT-OMRON, on which we achieve the third but the best
two methods both employ dense CRF [17] to further re-
fine their results. As for MAE, our approach also achieves
the best performance on all the datasets. For overall com-
parisons, PR and F-measure curve of different methods are
displayed in Fig. 6. One can observe that our approach no-
ticeably outperforms all the other methods. These obser-
vations demonstrate the efficiency of boundary-aware net-



Figure 7. Qualitative comparisons of the state-of-the-art algorithms and our approach. GT means ground-truth masks of salient objects.
The images are selected from six datasets for testing.

work, which indicates that it is useful to deal with the prob-
lem of SOD from the perspective of selectivity-invariance
dilemma. Note that the results of DSS, RA and HDHF on
HKU-IS [21] are only conducted on the test set.

Qualitative Evaluation. Fig. 7 show examples of
saliency maps generated by our approach as well as other
state-of-the-art methods. We can see that salient objects
can pop-out as a whole with clear boundaries by the pro-
posed method. From Fig. 7, we can find that many methods
fail to detect the salient objects with large changed appear-
ance as a whole as depicted in the row of 1 to 3. This in-
dicates the feature invariance is important for SOD, which
can be extracted by ISD to guarantee the integrity of salient
objects. In addition, when salient objects share the same
attributes (such as color, texture and locations) with back-
ground, the boundaries of salient objects predicted by many
methods become vague, as shown in the row of 4 to 6. In our
approach, the feature selectivity at boundary is guaranteed
by the awareness of boundaries, which deal with the above
situation to obtain clear boundaries. Moreover, three extra
examples about more difficult scenes are shown in the last
three rows of Fig. 7, our methods also obtain the impressive
results. These observations indicated the feature selectivity
and invariance are important to deal with the integrity of
objects and clarity of boundaries for SOD.

4.3. Ablation Analysis

To validate the effectiveness of different components of
the proposed method, we conduct several experiments on
all the six datasets to compare the performance variations

of our methods with different experimental settings.
Effectiveness of the BLS and TCS. To investigate

the efficacy of the proposed boundary localization stream
(BLS) and transition compensation stream (TCS), we con-
duct ablation experiments across all six datasets by intro-
ducing two different settings for comparisons. The first
setting denoted as “IPS” contains only the interior percep-
tion stream following the common feature extractor to di-
rectly predict the saliency maps. To explore the effective-
ness of boundary localization stream, the second one named
as “IPS + BLS” utilizes the interior perception stream and
boundary localization stream together, where the final pre-
dicted results are added up directly without the transition
compensation stream. Note that our proposed approach
BANet combines all three streams.

For a comprehensive comparison, above-mentioned set-
tings and BANet are evaluated on six benchmark datasets.
The comparison results are listed in Tab. 2. We can observe
that although only BLS is utilized compared with IPS, the
MAE obviously decreases and F-measure scores increase
significantly as shown in the second row. This indicates that
the BLS provides a strong selectivity at object boundaries
that boosts the performance a remarkable improvement. Be-
sides, combined with TCS on the basis of the second set-
ting, the performance of the model is further improved by
amending the probable failures in transitional regions be-
tween boundaries and interiors. For example, the Fβ score
increases from 0.914 to 0.929, with an improvement up to
1.5% on HKU-IS dataset. We also provide examples of dif-
ferent settings. As shown in Fig. 3, with the cooperation of



Table 2. Performance of the three streams in the proposed approach on six benchmark datasets. IP means interior perception stream, “IP +
BL” means the combination of interior perception and boundary localization streams, and BANet is our approach.

Models ECSSD DUT-OMRON PASCAL-S HKU-IS DUTS-TE XPIE
MAE Fwβ Fβ MAE Fwβ Fβ MAE Fwβ Fβ MAE Fwβ Fβ MAE Fwβ Fβ MAE Fwβ Fβ

IPS 0.048 0.868 0.902 0.068 0.679 0.723 0.084 0.774 0.823 0.043 0.839 0.873 0.050 0.753 0.779 0.052 0.801 0.845
IPS + BLS 0.046 0.877 0.914 0.060 0.699 0.752 0.080 0.791 0.839 0.042 0.845 0.878 0.047 0.762 0.809 0.050 0.812 0.859

BANet 0.035 0.908 0.929 0.059 0.736 0.763 0.072 0.810 0.849 0.032 0.886 0.905 0.040 0.811 0.829 0.044 0.839 0.873

Table 3. Comparisons of different contextual integration modules on six datasets. “w/o ISD” represents BANet without ISD, “r/w ASPP”
means ISD is replaced with ASPP, and “r/w ASPP” means ISD is replaced with ASPP-M.

Models ECSSD DUT-OMRON PASCAL-S HKU-IS DUTS-TE XPIE
MAE Fwβ Fβ MAE Fwβ Fβ MAE Fwβ Fβ MAE Fwβ Fβ MAE Fwβ Fβ MAE Fwβ Fβ

w/o ISD 0.046 0.876 0.913 0.064 0.701 0.745 0.086 0.772 0.827 0.039 0.858 0.890 0.049 0.766 0.797 0.052 0.806 0.852
r/w ASPP 0.040 0.889 0.912 0.060 0.713 0.740 0.077 0.790 0.832 0.036 0.868 0.887 0.045 0.780 0.793 0.471 0.821 0.855

r/w ASPP-M 0.039 0.891 0.917 0.060 0.711 0.742 0.078 0.789 0.834 0.036 0.870 0.891 0.044 0.786 0.800 0.048 0.822 0.857
BANet 0.035 0.908 0.929 0.059 0.736 0.763 0.072 0.810 0.849 0.032 0.886 0.905 0.040 0.811 0.829 0.044 0.839 0.873

Figure 8. Comparisons of ASPP and our ISD based on the pro-
posed boundary-ware network. (a) Images; (b) ground-truth;
(c) without ISD; (d) ASPP as a replacement of ISD; (e) ASPP-M
as a replacement of ISD; (f) Our approach.

IPS, BLS and TCS, the proposed method can generate more
accurate results.

Effectiveness of Integrated Successive Dilation Mod-
ule. Atrous Spatial Pyramid Pooling (ASPP) [4] is a com-
mon module for semantic segmentation [4, 5, 44], which
consists of multiple parallel convolutional layers with filters
at different dilation rates of [6, 12, 18, 24] , thus capturing
feature receptive fields at different scales.

To validate the effectiveness of our ISD, we construct
three different models based on our BANet to compare on
six benchmark datasets. The first network is that we remove
ISD from our BANet. Secondly, we replace ISD with ASPP
in BANet as the second network. Moreover, for a fairer
comparison, we modify ASPP denoted as “ASPP-M” with
the same branches and same dilation rates like ISD except
for the short information flows and replace ISD with ASPP-
M in our BANet as the third network.

The comparison of the three models and our BANet is
listed in Tab. 3. From Tab. 3, we find that after ISD is
removed from BANet, the performance of the method de-
creases dramatically on all the six datasets due to the lack
of the capability to extract features for a region embedded

in various contexts. As shown in the third row of Fig. 8, the
flowers close to the butterfly and the reflection of the goose
in water are mistakenly detected as salient objects.

In fact, when the network utilizes ASPP or ASPP-M, the
performance can also be improved to some extent. How-
ever, as the ISD has more information flow paths to ag-
gregate the contextual information, the feature invariance
can be enhanced better. Even if there are large appearance
changes in the interiors of a large salient object, the whole
salient object can be highlighted well, as shown in the last
one line of Fig. 8.

5. Conclusion
In this paper, we revisit the problem of SOD from the

perspective of selectivity-invariance dilemma, where fea-
ture selectivity and invariance are required by different re-
gions in salient objects. To solve this problem, we propose a
novel boundary-aware network with successive dilation for
salient object detection. In this network, boundary localiza-
tion and interior perception streams are introduced to cap-
ture features with selectivity and invariance, respectively.
A transition compensation stream is adopted to amend the
probable failures between boundaries and interiors. Then
the output of these three streams are fused to obtain the
saliency mask in a boundary-aware feature mosaic selec-
tion manner. Moreover, we also propose a novel integrated
successive dilation module for enhancing feature invariance
to help perceiving and localizing salient objects. Extensive
experiments on six benchmark datasets have validated the
effectiveness of the proposed approach.
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