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ABSTRACT
Salient object detection (SOD) has made great progress, but most of
existing SOD methods focus more on performance than efficiency.
Besides, the U-shape structure exists some drawbacks and there is
still a lot of room for improvement. Therefore, we propose a novel
framework to treat semantic context, spatial detail and boundary
information separately in the decoder part. Specifically, we propose
an efficient and effective Complementary Trilateral Decoder (CTD)
for saliency detection with three branches: Semantic Path, Spatial
Path and Boundary Path. These three branches are designed to
solve the dilution of semantic information, loss of spatial infor-
mation and absence of boundary information, respectively. These
three branches are complementary to each other and we design
three distinctive fusion modules to gradually merge them accord-
ing to “coarse-fine-finer” strategy, which significantly improves the
region accuracy and boundary quality. To facilitate the practical
application in different environments, we provide two versions:
CTDNet-18 (11.82M, 180FPS) and CTDNet-50 (24.63M, 110FPS).
Experiments show that our model performs better than state-of-
the-art approaches on five benchmarks, which achieves a favorable
balance between speed and accuracy.
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Figure 1: Comparisons of our proposed CTDNet with other
ResNet-based SOD models in accuracy, parameters and
speed. We calculate𝑚𝐹𝛽 on DUTS-TE dataset as an example.
The green circles represent real-time SODmethods, blue cir-
cles represent non-real-time SOD methods, and red circles
represent our method. The size of circle indicates speed and
larger circle indicates faster speed.

1 INTRODUCTION
The task of salient object detection (SOD) [1, 31] is to segment
the most visually distinctive objects or regions in an image. As
an efficient preprocessing technique, SOD is very important for
many downstream computer vision tasks, like image retrieval [9],
tracking [12], and segmentation [10].

Earlier traditional SOD algorithms [4, 13]mostly predicted saliency
maps based on some hand-crafted features. Recently, the develop-
ment of Convolutional Neural Networks (CNNs) [28], has greatly
promoted the progress of SOD due to their powerful feature repre-
sentation ability. However, most of existing SOD methods cannot
achieve a favorable trade-off between efficiency and performance.
On the one hand, some models tend to increase network depth
and width to obtain better performance, causing heavy computa-
tional cost and slow inference speed. These methods often require a
strong backbone (e.g., ResNet-50 or ResNet-101 [11]) and a compli-
cated decoder, which makes them difficult to apply under resource
constraints. As an example, EGNet [42] contains about 108M pa-
rameters and only runs at a speed of 9 FPS (see Fig. 1). On the other
hand, some researches start to consider efficient saliency detection
and try to compromise between speed and accuracy, such as CPD
[35] and ITSDNet [45], but these models cannot obtain comparable
performance (see Fig. 1). Therefore, it is significant and challeng-
ing to build a lightweight and fast SOD model with competitive
performance.
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Figure 2: The U-shape structure gradually recovers the spa-
tial information by leveraging lateral connections and top-
down path in the decoder part, while our trilateral decoder
separately treats semantic context, spatial detail and bound-
ary information with three branches.

Among FCN-based SODmethods, the U-shape structure [27] has
received the most attention and achieved good performance. The
U-shape structure gradually recovers the high-resolution feature
maps in the decoder part by leveraging a top-down path and lateral
connections (see Fig. 2(a)), but it exists several drawbacks and there
is still much room for improvement. First, a complete U-shape
structure can increase the computational complexity and reduce
the speed due to the large resolution of low-level features. Second,
spatial information lost in the process of downsampling cannot
be easily recovered only by merging the hierarchical features [39].
Third, semantic information of high-level features may be gradually
diluted in the top-down path and global context information is also
ignored, which probably produces incomplete segmentation results.
Fourth, the U-shape structure lacks boundary information, which
leads to poor boundary quality.

Based on the above observation, we abandon the traditional
U-shape structure and propose to treat semantic context, spatial
detail and boundary information separately in the decoder part to
achieve a good balance between speed and accuracy. We propose
an efficient and effective Complementary Trilateral Decoder (CTD)
for saliency detection with three branches: Semantic Path, Spa-
tial Path and Boundary Path (see Fig. 2(b)). These three branches
are designed to solve the dilution of semantic information, loss of
spatial information and absence of boundary information, respec-
tively. These three parts are derived from different stages of the
encoder and are complementary to each other, where the encoder
is shared. We can gradually merge these three branches according
to “coarse-fine-finer” strategy. Specifically, the Semantic Path is
introduced to capture rich semantic context and global context with
large receptive field, which can form an initial coarse saliency map
with accurate locations of salient objects. In contrast, the Spatial
Path is designed to preserve more spatial details. Both paths are
combined to construct a comprehensive and powerful feature rep-
resentation, which can produce a relative fine saliency map with
precise structures of salient objects. As for the Boundary Path, we
utilize low-level local features and high-level location features to
extract salient boundary features with an extra edge supervision.
Finally, we leverage the salient boundary features provided by the
Boundary Path to further refine the fused features of the first two

branches, which can generate a final finer saliency map with clear
boundaries of salient objects.

Considering the characteristics and complementarity of these
three branches, we propose three distinctive fusion modules to
merge them effectively. We design a simple Feature Fusion Module
(FFM) to fuse multi-level features efficiently for the Semantic Path
and Boundary Path. Then we propose a novel Cross Aggregation
Module (CAM) to merge the Semantic Path and Spatial Path. Be-
sides, we design a Boundary Refinement Module (BRM) to further
refine boundary. To facilitate the practical application in different
environments, we provide two versions of our proposed method
based on different backbone networks: CTDNet-18 and CTDNet-
50. Experiments on five benchmarks demonstrate that CTDNet-18
achieves competitive or even better performance compared with
large SOD models, and CTDNet-50 achieves the best performance.
Moreover, our CTDNet-18 only has 11.82M parameters and runs
at a speed of 180 FPS on a GTX 1080Ti GPU for 352×352 input
images, which is smaller and faster than existing approaches with
competitive performance. In general, our paper makes three major
contributions:

• We propose a novel framework to treat semantic context,
spatial detail and boundary information separately. To this
end, we propose an efficient and effective Complementary
Trilateral Decoder (CTD) for saliency detection with three
branches: Semantic Path, Spatial Path and Boundary Path.

• We explore the characteristics and complementarity of these
three branches. We further design three distinctive fusion
modules to gradually merge these three paths according to
“coarse-fine-finer” strategy, which significantly improves the
region accuracy and boundary quality.

• We provide two versions: CTDNet-18 (11.82M, 180FPS) and
CTDNet-50 (24.63M, 110FPS). Experiments show that our
proposed method obtains highly competitive performance
compared with 18 state-of-the-art methods, which achieves
a good trade-off between efficiency and performance.

2 RELATEDWORK
Recently, many FCN-based methods have achieved remarkable
progress in the SOD task. As one of the most representative net-
works, U-Net [27] can generate accurate segmentation results by
effectively combining low-level and high-level features, so many
researches follow this U-shape structure for saliency detection. Pi-
CANet [21] proposed a pixel-wise contextual attention network to
learn informative context locations for each pixel. TDBU [32] learnt
top-down and bottom-up saliency inference in a cooperative and
iterative manner. ASNet [33] explored the relationship between
fixation prediction and saliency detection by an efficient recur-
rent attention mechanism. MINet [24] focused on scale variation
and class imbalance challenges by utilizing multi-level and multi-
scale feature information. DASNet [41] proposed a depth-aware
framework to improve the segmentation performance with depth
constraints. PFSNet [22] proposed to aggregate adjacent feature
nodes in pairs through layer by layer shrinkage, which can fuse de-
tails and semantics effectively, and discard interference information.
However, these methods have brought huge amount of parameters
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Figure 3: The framework of our proposed Complementary Trilateral Decoder (CTD) Network with three branches: Semantic
Path, Spatial Path and Boundary Path, which treats semantic context, spatial detail and boundary information separately in
the decoder part. The three parts share the same encoder and are derived from different stages of the encoder. The three
branches are complementary to each other and we design three specific fusion modules to gradually merge them according
to “coarse-fine-fine” strategy.

and high model complexity to achieve better performance, resulting
in slow inference speed.

Recently, it has become more and more important to design a
lightweight and fast model for saliency detection. PoolNet [20] fully
exploited the pooling oprations based on the FPN [18] structure
for real-time saliency detection. CPD [35] constructed a partial
decoder for acceleration and utilized initial saliency map to refine
features for better results. ITSDNet [45] proposed an interactive
two-stream model to exploit contour and saliency information.
Although smaller and faster than the previous large models, these
methods cannot achieve comparable performance.

Because the U-shape structure may suffer from coarse object
boundaries, some researches pay attention to boundary informa-
tion by introducing an additional boundary-aware branch [44] or
a boundary-aware loss function. C2SNet [16] borrowed contour
knowledge for salient object detection. BASNet [26] proposed a
boundary-aware model and a hybrid fusing loss for accurate salient
object detection. EGNet [42] focused on the complementary in-
formation modeling of salient object and salient edge to improve
the boundaries and localization. BANet [29] designed a boundary-
aware model with successive dilation from the perspective of se-
lectivity and invariance. PAGE [34] proposed pyramid attention
structure for saliency detection and salient edge detection branch
for boundary estimation. AFNet [8] proposed a boundary-aware
model with multi-scale attentive feedback module and boundary-
enhanced loss. SCRN [36] proposed an edge-aware network to

bidirectionally pass messages between binary segmentation and
edge map.

3 METHOD
Firstly, we outline the whole framework of our proposed CTDNet.
Secondly, we introduce the effectiveness of these three branches in
detail and how to merge them effectively. Finally, we describe the
loss functions and supervision.

3.1 Overview of Network Architecture
Taking into account some drawbacks of the U-shape structure men-
tioned above, we propose a novel framework to treat semantic
context, spatial detail and boundary information separately in the
decoder. As Fig. 3 shows, we propose an efficient and effective Com-
plementary Trilateral Decoder (CTD) for saliency detection with
three branches: Semantic Path, Spatial Path and Boundary Path.

For the encoder, we adopt ResNet-50 [11] as the backbone net-
work. In addition to ResNet-50, we also use shallow ResNet-18
[11] as the backbone network for lightweight and fast design con-
cept. Both are pretrained on ImageNet [6] and encode multi-level
features from different stages. The low-level features cost more
computations due to the larger resolution, so we discard features of
shallower layers for acceleration and only utilize the features of the
last four stages that have strides of {4, 8, 16, 32} with respect to the
input image. For convenience, these four features can be expressed
as

{
𝐸 (2) , 𝐸 (3) , 𝐸 (4) , 𝐸 (5)

}
.
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Figure 4: The detailed structure of two fusionmodules: CAM
and BRM.

The decoder has three branches: Semantic Path, Spatial Path
and Boundary Path. These three parts share the same encoder
and are derived from different stages of the encoder. These three
branches are designed to solve the dilution of semantic information,
loss of spatial information and absence of boundary information,
respectively. These three branches are complementary to each other
and we design three distinctive fusion modules to gradually merge
them according to “coarse-fine-fine” strategy, which significantly
improves the region accuracy and boundary quality. More details
are presented in Sec. 3.2 and 3.3.

3.2 Three Complementary Branches
3.2.1 Semantic Path. Both semantic context and global context
are very important for saliency detection. However, the U-shape
structure exists two issues: 1) the semantic information is grad-
ually diluted in the top-down path; 2) the global context cannot
be captured due to limited receptive field. Both these may lead to
inaccurate locations of salient objects and incomplete segmentation
results.

To solve these issues, we propose the Semantic Path to capture
rich semantic context and global context with large receptive field,
which can produce an initial coarse saliency map with accurate lo-
cations of salient objects. First, we embed a Global Average Pooling
(GAP) layer on the tail of the backbone network, which can pro-
vide the maximum receptive field with the strongest global context.
Then we apply a 1×1 convolution followed by a batch normaliza-
tion and a ReLU activation function to 𝐸 (4) and 𝐸 (5) , restricting
the number of channels to 64 in order to reduce computation cost.
Finally, we propose the Feature Fusion Module (FFM) to efficiently
fuse the upsampled output of global pooling 𝐸 (6) and the features
of the last two stages, which forms a partial U-shape structure (see
Fig. 3). The Semantic Path can be formulized as:

𝐸
(5)
𝑔 = 𝐹𝐹𝑀1 (𝐹1×1 (𝐸 (5) ),𝑈 𝑝 (𝐺𝐴𝑃 (𝐸 (5) ))), (1)

𝐷𝑝1 = 𝐹𝐹𝑀2 (𝐹1×1 (𝐸 (4) ),𝑈 𝑝 (𝐸 (5)
𝑔 )), (2)

where 𝐹1×1 and 𝑈𝑝 represent 1×1 convolution and upsampling,
respectively. The detailed structure of FFM is introduced in Sec. 3.3.

3.2.2 Spatial Path. While the Semantic Path captures rich seman-
tic context and global context, the Spatial Path is devised to pre-
serve more spatial details. The spatial information is also necessary
for saliency detection, but it is seriously lost after multiple down-
samplings and cannot be recovered perfectly by integrating the
hierarchical features from the encoder. Therefore, we propose a
Spatial Path to learn more discriminative feature representation
from spatial dimension.

The Spatial Path is drawn from low-level features 𝐸 (3) with large
resolution (1/8 of the input size), which is beneficial to encode af-
fluent spatial details. Specifically, we design the Spatial Attention
Module (SAM) to refine features effectively (see Fig. 3). We first
use average and maximum operations along the channel axis, gen-
erating two different single-channel spatial maps 𝑆𝑎𝑣𝑔 and 𝑆𝑚𝑎𝑥 ,
respectively. Then we concatenate them and compute a spatial
attention map by a 3×3 convolution and sigmoid function. The
spatial attention map𝑀𝑠𝑎 can re-weight the features 𝐸 (3) from spa-
tial dimension by element-wise multiplication. Finally, the refined
features 𝐸 (3)

𝑠𝑎 are fed into a 3×3 convolution layer to squeeze the
channels to 64. The Spatial Path can be formulized as:

𝑆𝑎𝑣𝑔 = 𝐹𝑎𝑣𝑔 (𝐸 (3) ), 𝑆𝑚𝑎𝑥 = 𝐹𝑚𝑎𝑥 (𝐸 (3) ), (3)

𝑀𝑠𝑎 = 𝜎 (𝐹3×3 (𝐶𝑜𝑛𝑐𝑎𝑡 (𝑆𝑎𝑣𝑔, 𝑆𝑚𝑎𝑥 ))), (4)

𝐷𝑝2 = 𝐹3×3 (𝑀𝑠𝑎 ⊗ 𝐸 (3) ) = 𝐹3×3 (𝐸 (3)
𝑠𝑎 ), (5)

where 𝐹𝑎𝑣𝑔 and 𝐹𝑚𝑎𝑥 denote average and maximum operations
along the channel axis, respectively. 𝐹3×3 and 𝐶𝑜𝑛𝑐𝑎𝑡 represent
3×3 convolution and concatenation. 𝜎 and ⊗ represent the sigmoid
function and element-wise multiplication.

3.2.3 Boundary Path. We observe that saliency maps produced
by many existing SOD methods based on the U-shape structure
have coarse boundaries. Therefore, we design a Boundary Path
to improve boundary quality by utilizing boundary information
explicitly. We can extract boundary features from low-level features
𝐸 (2) , which preserve better boundary information due to large
resolution (1/4 of the input size). However, it is likely to bring noise
and interference such as the boundaries of non-salient objects.
Therefore, we exploit high-level location information as guidance
to help enhance salient boundary features and suppress non-salient
boundary features with an extra edge supervision (see Fig. 3).

Specifically, we first apply a 1×1 convolution followed by a batch
normalization and a ReLU activation function to low-level features
𝐸 (2) . Then we upsample the high-level features 𝐸 (5)

𝑔 (see Eq. (1))
to the same resolution as 𝐸 (2) by bilinear interpolation. Finally, we
use the FFM (see Sec. 3.3) to fuse them efficiently. In addition, we
apply an explicit salient edge loss to supervise the Boundary Path
explicitly. The Boundary Path can be formulized as:

𝐷𝑝3 = 𝐹𝐹𝑀3 (𝐹1×1 (𝐸 (2) ),𝑈 𝑝 (𝐸 (5)
𝑔 )) . (6)

3.3 Three Fusion Modules
3.3.1 Feature Fusion Module. We propose a simple fusion module
FFM to fuse multi-level features efficiently for the Semantic Path
and Boundary Path, as shown in Fig. 3. To be specific, FFM receives
two inputs 𝑓1 and 𝑓2, and we adopt the multiplication operation to
fuse these two features. Compared with addition and concatenation,
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Figure 5: The saliency maps from different locations of our
network. Each example contains two rows and the second
row of each example denotes the zoom-in view of salient ob-
ject. The results conform to “coarse-fine-finer” predictions
along with the gradual combination of these three branches,
which demonstrates the complementarity of these three
branches.

the multiplication operation can avoid redundant information and
suppress background noise. The fused features pass through two
3×3 convolution layers to obtainmore robust feature representation.
Note that each convolution is followed by a batch normalization
and a ReLU activation function. The above process can be described
as:

𝐹𝐹𝑀 (𝑓1, 𝑓2) = 𝐹3×3 (𝐹3×3 (𝑓1 ⊗ 𝑓2)). (7)

3.3.2 Cross Aggregation Module. The output of the Semantic Path
𝐷𝑝1 contains rich semantic information with global context, which
can produce an initial coarse saliency map with accurate locations
of salient objects (see Fig. 5(c)). In contrast, the output of the Spatial
Path 𝐷𝑝2 preserves more spatial details. Both paths are complemen-
tary to each other, so we design a novel fusion module CAM to
merge these two branches effectively.

As Fig. 4(a) shows, the two inputs of CAM have different resolu-
tions: 𝐷𝑝1 ∈ 𝑅

𝐻
2 ×

𝑊
2 ×𝐶 and 𝐷𝑝2 ∈ 𝑅𝐻×𝑊 ×𝐶 . First, we perform the

multi-scale transformation on each input. Specifically, we upsample
𝐷𝑝1 to the same resolution as 𝐷𝑝2 by bilinear interpolation and
downsample 𝐷𝑝2 to the same size as 𝐷𝑝1 by a 3×3 convolution
with stride 2, obtaining the corresponding features 𝐷′

𝑝1 ∈ 𝑅𝐻×𝑊 ×𝐶

and 𝐷
′
𝑝2 ∈ 𝑅

𝐻
2 ×

𝑊
2 ×𝐶 . Second, we perform cross aggregation on

each scale by the multiplication operation and then apply a 3×3

convolution respectively to adapt them, which can capture multi-
scale information and promote interaction between two branches.
Note that each convolution is followed by a batch normalization
and a ReLU activation function. Finally, the two fused features
𝐶1 ∈ 𝑅

𝐻
2 ×

𝑊
2 ×𝐶 and 𝐶2 ∈ 𝑅𝐻×𝑊 ×𝐶 are fed into the FFM to obtain

the final output 𝐷𝑝12. By the proposed CAM, we construct a com-
prehensive and powerful feature representation, which can produce
a relative fine saliency map with precise structures of salient objects
(see Fig. 5(d)). The whole process can be described as:

𝐷
′
𝑝1 = 𝑈𝑝 (𝐷𝑝1), 𝐷

′
𝑝2 = 𝐷𝑜𝑤𝑛3×3 (𝐷𝑝2), (8)

𝐶1 = 𝐹3×3 (𝐷𝑝1 ⊗ 𝐷
′
𝑝2),𝐶2 = 𝐹3×3 (𝐷𝑝2 ⊗ 𝐷

′
𝑝1), (9)

𝐷𝑝12 = 𝐹𝐹𝑀4 (𝑈𝑝 (𝐶1),𝐶2), (10)
where 𝐷𝑜𝑤𝑛3×3 denotes downsampling operation using 3×3 con-
volution with stride 2.

3.3.3 Boundary Refinement Module. Although we obtain a rela-
tively fine saliency map after merging the Semantic Path and Spatial
Path, we can leverage the salient boundary information provided
by the Boundary Path to further refine boundary. Therefore, we
propose a fusion module BRM (see Fig. 4(b)) to merge𝐷𝑝12 and𝐷𝑝3,
which can generate a final finer saliency map with clear boundaries
of salient objects (see Fig. 5(e)).

Specifically, we first combine the output features of the two
branches by addition operation. Then we pool the fused features 𝐵𝑓

to generate a feature vector and further calculate an attention vector
to guide the feature learning by a 1×1 convolution and sigmoid
function. The weight vector can reweight the fused features 𝐵𝑓

for feature selection and refinement by multiplication operation.
Finally, the refined features 𝐵𝑟 are combined with 𝐵𝑓 and then pass
through two 3×3 convolution layers to further enhance feature
representation. Note that each 3×3 convolution is followed by a
batch normalization and a ReLU activation function. The above
process can be described as:

𝐵𝑓 = 𝑈𝑝 (𝐷𝑝12) + 𝐷𝑝3, (11)
𝐵𝑟 = 𝐵𝑓 ⊗ 𝜎 (𝐹1×1 (𝐺𝐴𝑃 (𝐵𝑓 ))), (12)
𝐷𝑝123 = 𝐹3×3 (𝐹3×3 (𝐵𝑟 + 𝐵𝑓 )) . (13)

3.4 Loss Function
In SOD task, there are two common loss functions: BCE loss [5] and
IoU loss [23]. BCE loss computes the error for each pixel between
the prediction mask and the ground truth, which is formulated as:

ℓ𝑏𝑐𝑒 (𝑃,𝐺) = −
𝐻∑
𝑖=1

𝑊∑
𝑗=1

[𝐺 (𝑖, 𝑗)𝑙𝑜𝑔(𝑃 (𝑖, 𝑗))

+(1 −𝐺 (𝑖, 𝑗))𝑙𝑜𝑔(1 − 𝑃 (𝑖, 𝑗))],
(14)

where 𝑃 (𝑖, 𝑗) and 𝐺 (𝑖, 𝑗) represent the pixel of prediction mask (𝑃 )
and the ground truth (𝐺) at location (𝑖, 𝑗) in an image.𝑊 and 𝐻

are the width and height of the image, respectively. IoU loss is used
to measure the similarity of structure instead of focusing on single
pixel. We adopt the following form:

ℓ𝑖𝑜𝑢 (𝑃,𝐺) = 1 −
∑𝐻
𝑖=1

∑𝑊
𝑗=1𝐺 (𝑖, 𝑗)𝑃 (𝑖, 𝑗)∑𝐻

𝑖=1
∑𝑊

𝑗=1 [𝐺 (𝑖, 𝑗) + 𝑃 (𝑖, 𝑗) −𝐺 (𝑖, 𝑗)𝑃 (𝑖, 𝑗)]
.

(15)
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Table 1: Quantitative comparisons with state-of-the-art SOD models on five benchmarks in terms of parameters, speed,𝑚𝐹𝛽 ,
𝑀𝐴𝐸 and 𝐸𝑚 . The best two results are shown in red and green, respectively.

ECSSD PASCAL-S DUTS-TE HKU-IS DUT-OMRONMethod Params
(M)

Speed
(FPS) 𝑚𝐹𝛽 𝑀𝐴𝐸 𝐸𝑚 𝑚𝐹𝛽 𝑀𝐴𝐸 𝐸𝑚 𝑚𝐹𝛽 𝑀𝐴𝐸 𝐸𝑚 𝑚𝐹𝛽 𝑀𝐴𝐸 𝐸𝑚 𝑚𝐹𝛽 𝑀𝐴𝐸 𝐸𝑚

VGG-based models

C2SNet18 158.86 30 .864 .055 .914 .758 .080 .839 .716 .063 .846 .851 .048 .927 .683 .072 .829
RAS18 21.23 35 .889 .056 .914 .777 .101 .829 .751 .059 .861 .871 .045 .929 .713 .062 .846
PiCANet18 38.32 7 .885 .046 .910 .789 .077 .828 .749 .054 .852 .870 .042 .934 .710 .068 .834
BMPM18 75.07 22 .868 .045 .914 .758 .073 .836 .745 .049 .860 .871 .039 .937 .692 .064 .837
EGNet19 108.07 9 .913 .041 .923 .809 .076 .843 .800 .044 .880 .893 .035 .945 .744 .057 .858
PoolNet19 52.51 32 .910 .042 .921 .806 .071 .839 .799 .042 .881 .894 .033 .948 .739 .056 .858
PAGE19 47.40 25 .906 .042 .920 .806 .075 .841 .777 .052 .869 .882 .037 .940 .736 .062 .853
AFNet19 35.99 26 .908 .042 .918 .820 .070 .850 .793 .046 .879 .888 .036 .942 .738 .057 .853
CPD19 29.10 66 .915 .040 .922 .820 .072 .850 .813 .043 .892 .896 .033 .945 .745 .057 .863
GateNet20 - - .896 .041 .921 .797 .067 .849 .783 .045 .881 .889 .036 .945 .723 .061 .848
ITSDNet20 17.08 48 .875 .040 .917 .773 .067 .844 .798 .042 .892 .890 .035 .944 .745 .063 .855

ResNet-based models

PiCANet18 49.31 5 .886 .046 .913 .792 .074 .832 .759 .051 .862 .870 .043 .936 .717 .065 .841
BANet19 56.02 13 .923 .035 .928 .823 .069 .852 .815 .040 .892 .900 .032 .950 .746 .059 .860
EGNet19 111.78 8 .920 .037 .927 .817 .073 .848 .815 .039 .891 .901 .031 .950 .755 .053 .867
SCRN19 25.32 32 .918 .038 .926 .826 .064 .857 .809 .040 .888 .896 .034 .949 .746 .056 .863
PoolNet19 68.16 18 .915 .039 .924 .815 .074 .848 .809 .040 .889 .899 .032 .949 .747 .056 .863
CPD19 47.97 62 .917 .037 .925 .820 .070 .849 .805 .043 .887 .891 .034 .944 .747 .056 .866
BASNet19 87.03 25 .880 .037 .921 .771 .075 .846 .791 .048 .884 .895 .032 .946 .756 .056 .869
GateNet20 - - .916 .040 .924 .819 .067 .851 .807 .040 .889 .899 .033 .949 .746 .055 .862
U2Net20 46.21 30 .892 .033 .924 .770 .073 .842 .792 .045 .886 .896 .031 .948 .761 .054 .871
DFI20 29.57 57 .920 .038 .924 .830 .064 .855 .814 .039 .892 .901 .031 .951 .752 .055 .865
GCPANet20 67.05 50 .919 .035 .920 .827 .061 .847 .817 .038 .891 .898 .031 .949 .748 .056 .860
ITSDNet20 26.55 43 .895 .035 .927 .785 .071 .850 .804 .041 .895 .899 .031 .952 .756 .061 .863
MINet20 162.38 31 .924 .033 .927 .829 .063 .851 .828 .037 .898 .909 .029 .953 .755 .055 .865

Our CTDNet

CTDNet-18 11.82 180 .920 .037 .921 .831 .065 .857 .835 .037 .902 .916 .028 .955 .767 .052 .873
CTDNet-50 24.63 110 .927 .032 .925 .841 .061 .861 .853 .034 .909 .919 .027 .955 .779 .052 .875

As described above, our model is deeply supervised with six
outputs. All outputs pass through a 3×3 convolution and sigmoid
function to convert the feature maps to the corresponding single-
channel prediction masks. For 𝐷𝑝123, 𝐷𝑝12, 𝐷𝑝1, 𝐸

(5)
𝑔 and 𝐸 (6) , we

use BCE loss and IoU loss together to supervise these five prediction
masks (see Eq. (16)), while for 𝐷𝑝3, we only use BCE loss to super-
vise the boundary prediction mask (𝑃𝑏 ). Note that the ground truth
of salient boundary (𝐺𝑏 ) can be easily obtained from the ground
truth of salient objects.

ℓ (𝑃,𝐺) = ℓ𝑖𝑜𝑢 (𝑃,𝐺) + 𝛽ℓ𝑏𝑐𝑒 (𝑃,𝐺), (16)

where 𝛽 is a hyperparameter to balance the weight between the two
loss functions, so that the network can achieve better performance.
In our paper, the parameter 𝛽 is set to 0.6. The total loss function is
denoted:

𝐿(𝑃, 𝑃𝑏 ,𝐺,𝐺𝑏 ) = ℓ𝑏𝑐𝑒 (𝑃𝑏 ,𝐺𝑏 ) +
5∑

𝑘=1
𝛼𝑘 ℓ (𝑃𝑘 ,𝐺), (17)

where 𝛼𝑘 denotes the weight of the 𝑘 − 𝑡ℎ loss term.

4 EXPERIMENTS
Firstly, we describe five popular SOD datasets and evaluation met-
rics. Secondly, we introduce the implementation details. Finally, we
present extensive experimental results to demonstrate the superi-
ority and efficiency of our proposed model.

4.1 Datasets
We conduct experiments on five standard benchmark datasets: EC-
SSD (1,000) [37], PASCAL-S (850) [17], DUTS (15,552) [30], HKU-IS
(4,447) [15] and DUT-OMRON (5,168) [38], all of which contain
complex scenarios with one or more salient objects. In particular,
DUTS includes 10,553 images for training (DUTS-TR) and 5,019
images for testing (DUTS-TE). We train our method on DUTS-TR
and test our method on other datasets.

4.2 Evaluation Metrics
We adopt three evaluation metrics: Mean Absolute Error (MAE),
F-measure and E-measure [7] to quantitatively evaluate the perfor-
mance. MAE represents the pixel-wise average absolute difference
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Figure 6: Qualitative comparison of our model with existing state-of-the-art SOD models in some challenging scenarios.

between prediction mask and ground truth:

𝑀𝐴𝐸 =
1

𝑊 × 𝐻

𝐻∑
𝑖=1

𝑊∑
𝑗=1

|𝑃 (𝑖, 𝑗) −𝐺 (𝑖, 𝑗) | , (18)

where 𝑃 and𝐺 represent the predictionmask and the corresponding
ground truth, respectively.𝑊,𝐻 are the width and height of the
image. Smaller MAE indicates better performance. F-measure (𝐹𝛽 )
takes both precision and recall into account:

𝐹𝛽 =
(1 + 𝛽2) · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑅𝑒𝑐𝑎𝑙𝑙
𝛽2 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

, (19)

where 𝛽2 is set to 0.3 to emphasize the precision over recall. Larger
𝐹𝛽 indicates better performance. We choose the mean F-measure
(m𝐹𝛽 ) in our paper. E-measure (𝐸𝑚) measures the structural simi-
larity between the prediction mask and the ground truth.

4.3 Implementation Details
We implement our method by PyTorch and conduct experiments
on a NVIDIA 1080Ti GPU. We adopt ResNet-18 and ResNet-50 [11]
pre-trained on ImageNet [6] as backbone networks, respectively.
In the training period, all training images are resized to 352×352
with random cropping and random horizontal flipping to feed into
the proposed model. We use stochastic gradient descent (SGD)
optimizer with momentum of 0.9 and weight decay of 5e-4 to train
our model. The batch size is 32 and training epoch is 40. We use the
warm-up and linear decay learning rate strategy with the maximum
learning rate 5e-3 for pre-trained backbone and 5e-2 for the rest of
network. During the inference period, each image is simply resized
to 352×352 to predict saliency map without any post-processing
(e.g., CRF [14]).

4.4 Comparison results
To prove the effectiveness of our method, we compare with 18 state-
of-the-art SOD models, including C2SNet [16], RAS [2], PiCANet

[21], BMPM [40], BANet [29], EGNet [42], SCRN [36], PoolNet [20],
PAGE [34], AFNet [8], CPD [35], BASNet [26], GateNet [43], DFI
[19], ITSDNet [45], GCPANet [3], MINet [24] and U2Net [25]. For
a fair comparison, we use saliency maps released by the authors
and evaluate them with the same Matlab code.

4.4.1 Qualitative Comparison. To intuitively show the advantages
of our model, we provide some visual examples of various SOD
models, as shown in Fig. 6.We can observe that ourmethodCTDNet-
18 and CTDNet-50 can generate more complete and more accurate
segmentation results than other counterparts. It can handle various
challenging scenarios, such as multiple salient objects (row 1 ,4
and 5), fine structure (row 2 and 3), cluttered backgrounds (row
3), small objects (row 4 and 5) and foreground interference (row
6). In addition, we do not use any post-processing to obtain these
results. Therefore, our model shows its effectiveness and robustness
in processing complicated images.

4.4.2 Quantitative Comparison. Tab. 1 shows the quantitative re-
sults on five popular datasets in terms of 𝑚𝐹𝛽 , 𝑀𝐴𝐸 and 𝐸𝑚 . In
addition, we also list the parameters and speed of each method to
measure efficiency. To facilitate the practical application in different
environments, we adopt ResNet-18 and ResNet-50 as backbones
respectively and name our model CTDNet-18 and CTDNet-50 ac-
cordingly. On the one hand, our approach CTDNet-18 outperforms
all the VGG-based SOD models and achieves comparable or even
better performance than ResNet-based SOD models. More impor-
tantly, CTDNet-18 only has 11.82M parameters and runs at a speed
of 180 FPS on one GTX 1080Ti GPU for 352×352 input images,
which surpasses the existing approaches by a large margin. On the
other hand, our approach CTDNet-50 obtains the best performance
against state-of-the-art methods under almost all evaluation met-
rics on five benchmarks. Moreover, CTDNet-50 runs at a 110 FPS
speed with 24.63M parameters, which is much smaller and faster
than the existing ResNet-based SOD methods. In conclusion, our

Session 35: Vision and Language-I MM ’21, October 20–24, 2021, Virtual Event, China

4973



Table 2: The ablation study of our proposed components. The backbone network takes ResNet-18 as an example. By adding
each module gradually, our model achieves the best performance.

Base FFM Global SAM CAM BRM Params
(M)

Speed
(FPS)

DUTS-TE DUT-OMRON
𝑚𝐹𝛽 𝑀𝐴𝐸 𝐸𝑚 𝑚𝐹𝛽 𝑀𝐴𝐸 𝐸𝑚

✓ 11.39 240 .788 .048 .874 .718 .066 .840
✓ ✓ 11.46 230 .799 .045 .880 .730 .063 .847
✓ ✓ ✓ 11.57 210 .813 .041 .892 .749 .057 .860
✓ ✓ ✓ ✓ 11.63 200 .821 .040 .895 .756 .055 .867
✓ ✓ ✓ ✓ ✓ 11.78 188 .828 .039 .896 .761 .054 .870
✓ ✓ ✓ ✓ ✓ ✓ 11.82 180 .835 .037 .902 .767 .052 .873

Table 3: The complementarity of these three branches. 𝐷𝑝1,
𝐷𝑝12 and 𝐷𝑝123 denote the Semantic Path, the combination
of both Semantic Path and Spatial Path, the combination of
these three branches, respectively.

Merge DUTS-TE DUT-OMRON
𝑚𝐹𝛽 𝑀𝐴𝐸 𝐸𝑚 𝑚𝐹𝛽 𝑀𝐴𝐸 𝐸𝑚

𝐷𝑝1 .762 .050 .871 .711 .063 .848
𝐷𝑝12 .820 .039 .896 .756 .054 .869
𝐷𝑝123 .835 .037 .902 .767 .052 .873

model achieves a favorable trade-off between speed and accuracy,
which clearly demonstrates its superiority and efficiency.

4.5 Ablation Study
Firstly, we investigate the complementarity of these three branches.
Secondly, we verify the effectiveness of our proposed components.
All experiments are conducted on DUTS-TE and DUT-OMRON
datasets based on ResNet-18 network.

4.5.1 The complementarity of these three branches. To demonstrate
the complementarity and necessity of these three branches, we con-
duct experiments both qualitatively and quantitatively. As shown
in Tab. 3, when merging the Semantic Path 𝐷𝑝1 and Spatial Path
𝐷𝑝2, the performance can be greatly improved. Moreover, the per-
formance can be further boosted by merging 𝐷𝑝12 and 𝐷𝑝3, which
benefits from the salient boundary information provided by the
Boundary Path 𝐷𝑝3. In addition, we visualize some examples in Fig.
5. Each example contains two rows and the second row of each
example denotes the zoom-in view of salient object. As we can see,
the produced saliency maps conform to “coarse-fine-finer” predic-
tions along with the gradual combination of these three branches.
Column 3 represents initial coarse saliency maps produced by 𝐷𝑝1
with accurate locations of salient objects. Column 4 represents rela-
tively fine saliency maps produced by 𝐷𝑝12 with precise structures
of salient objects. Column 5 represents final finer saliency maps pro-
duced by 𝐷𝑝123 with clear boundaries of salient objects. Obviously,
experimental results verify the complementarity and necessity of
these three branches.

4.5.2 The effectiveness of our proposed components. To demon-
strate the effectiveness of our proposed components, we conduct
ablation experiments by gradually adding them. First, we replace
all the proposed fusion modules with simple addition operation
followed by the 3×3 convolution to construct a baseline network,
which still maintains three branches in the decoder. Second, we
gradually add the FFM and global context for the Semantic Path and
Boundary Path. Then we add the SAM in the Spatial Path. Finally,
we use the proposed fusion modules CAM and BRM to merge these
three branches. As shown in Tab. 2, our method achieves the best
performance when all modules are contained, which demonstrates
the effectiveness and necessity of each module.

5 CONCLUSION
In this paper, we first reveal that the existing SOD methods can-
not achieve a good balance between speed and accuracy. Then
we analyze the drawbacks of the U-shape structure. To this end,
we propose to treat semantic context, spatial detail and boundary
information separately in the decoder. Based on this idea, we pro-
pose an efficient and effective Complementary Trilateral Decoder
for saliency detection with three branches: Semantic Path, Spatial
Path and Boundary Path. These three branches are designed to
solve the dilution of semantic information, loss of spatial infor-
mation and absence of boundary information, respectively. These
three branches are complementary to each other and we design
three distinctive fusion modules to gradually merge them accord-
ing to “coarse-fine-finer” strategy, which significantly improves the
region accuracy and boundary quality. To facilitate the practical
application in different environments, we provide two versions:
CTDNet-18 (11.82M, 180FPS) and CTDNet-50 (24.63M, 110FPS). Ex-
periments demonstrate that our proposed method performs better
than state-of-the-art methods on five benchmarks, which achieves
a favorable trade-off between efficiency and performance.
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