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View-aware Salient Object Detection
for 360° Omnidirectional Image
Junjie Wu, Changqun Xia, Tianshu Yu, Jia Li, Senior Member, IEEE

Abstract—Image-based salient object detection (ISOD) in
360◦ scenarios is significant for understanding and applying
panoramic information. However, research on 360◦ ISOD has
not been widely explored due to the lack of large, complex,
high-resolution, and well-labeled datasets. Towards this end,
we construct a large scale 360◦ ISOD dataset with object-
level pixel-wise annotation on equirectangular projection (ERP),
which contains rich panoramic scenes with not less than 2K
resolution and is the largest dataset for 360◦ ISOD by far
to our best knowledge. By observing the data, we find cur-
rent methods face three significant challenges in panoramic
scenarios: diverse distortion degrees, discontinuous edge effects
and changeable object scales. Inspired by humans’ observing
process, we propose a view-aware salient object detection method
based on a Sample Adaptive View Transformer (SAVT) module
with two sub-modules to mitigate these issues. Specifically, the
sub-module View Transformer (VT) contains three transform
branches based on different kinds of transformations to learn
various features under different views and heighten the model’s
feature toleration of distortion, edge effects and object scales.
Moreover, the sub-module Sample Adaptive Fusion (SAF) is
to adjust the weights of different transform branches based
on various sample features and make transformed enhanced
features fuse more appropriately. The benchmark results of 20
state-of-the-art ISOD methods reveal the constructed dataset is
very challenging. Moreover, exhaustive experiments verify the
proposed approach is practical and outperforms the state-of-the-
art methods.

Index Terms—Salient object detection, panoramic dataset, view
transformer, distortion.

I. INTRODUCTION

OMNIDIRECTIONAL images can sample the entire
viewing sphere surrounding its optical center, a 360◦ ×

180◦ FoV [1], [2] and the resolution of an omnidirectional
image (ODI) is always several times that of the traditional
image, making storing, transmitting and understanding more
difficult [3]. Therefore, salient object detection, automatically
processing regions of interest and selectively ignoring parts
of uninterest, is significant for compressing, transmitting and
analyzing 360◦ panoramic images [4]–[6].

Currently, panoramic datasets are evolving to meet in-
creasing demands in benchmarking and developing 360◦-
based ISOD models. Li et al. [7] construct the first 360◦

ISOD dataset 360-SOD with pixel-wise object-level annotation
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Fig. 1. Representative examples of 360◦ omnidirectional images in ERP
form. These three columns show the cases of diverse distortion degrees,
discontinuous edge effects and changeable object scales, respectively.

containing 500 equirectangular projection (ERP) images in
512× 1024 resolution from existing human fixation datasets.
Ma et al. [8] collect 1105 ERP images in 546×1024 resolution
with object-level annotation. Zhang et al. [2] provide a dataset
with object-level and instance-level annotation containing 107
ERP images in 512 × 1024 resolution. However, currently
available datasets are relatively small in scale and resolution
and less complex in scenarios, which is not enough for
further studies and is a primary cause for limited related
research. Besides, insufficient training data easily leads to
model overfitting. Therefore, it is urgent to break the data
bottleneck.

To this end, we construct a new large scale 360◦ omnidi-
rectional image-based salient object detection (SOD) dataset
referred to as ODI-SOD with object-level pixel-wise anno-
tation on ERP to assist studies about 360◦ ISOD task. The
proposed dataset contains 6,263 ERP images with not less
than 2K resolution selected from 8,896 panoramic images and
998 videos. The chosen images have the number of salient
regions ranging from one to more than ten, the area ratios of
salient regions from less than 0.02% to more than 65% and
the resolutions from 2K to 8K. More than half of the scenarios
are complex and contain diverse objects.

Moreover, through the observation of the dataset, we find
that the poor performances of existing state-of-the-art meth-
ods [7], [9], [10] can attribute to three prominent challenges,
i.e., diverse distortion degrees, discontinuous edge effects and
changeable object scales. Distortion varying with the projec-
tion position (e.g., the first col in Fig.1) leads to uniform filter
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sampling and feature learning difficulties. Edge discontinuity
(e.g., the animal is split into two parts on the borders in the
second col of Fig.1) makes it difficult to segment complete
salient objects on projection borders. Changeable scale objects,
especially small/large ones in wide FoV panoramas (e.g., the
last cols in Fig.1), make detection and segmentation more
difficult.

In fact, to mitigate above challenges in 360◦ ISOD, re-
searchers have made some related attempts. For example,
Li et al. [7] propose a distortion-adaptive module that cuts
each ERP image into four image blocks to learn different
kernels and design a multi-scale module to integrate context
features. Ma et al. [8] put forward a multi-stage ISOD method
to handle ERP distortions by using less distorted perspective
images and object-level semantical saliency ranking. However,
these methods mainly focus on alleviating distortion, ignoring
that an advantageous characteristic of a panorama is the
continuous complete panoramic field of view. Cutting an ERP
image into blocks makes a panorama lose its full panoramic
view and may only segment out partial object regions due
to complete objects being broken. Perspective images also
contain a limited field of view and may be affected by the
previous stage’s mistakes. Moreover, multi-stage learning and
perspective images demanding heavy memory are not friendly
to model training/testing.

The FoV of a panorama is 360◦ × 180◦ while the binoc-
ular visual field of human beings is about 120◦ [11]. To
better understand the panorama, humans usually change the
viewpoint (e.g., look up/down or left/right) or adjust view
distance (e.g, zoom in/out) to obtain more scene information
from different perspectives. The whole observing process is
smooth and keeps the complete panoramic view. Inspired by
the observing behaviors of human beings, in this paper we put
forward a solid Sample Adaptive View Transformer (SAVT)
module based on various geometric transformations. SAVT
contains two sub-modules, View Transformer (VT) and Sam-
ple Adaptive Fusion (SAF). Simulating humans’ observing
process, VT makes different feature transformations based on
different ERP center viewpoints or view distances to learn
various features under different views. Following VT, SAF
generates adaptive weights for different transform branches
based on sample characteristics and makes the features fuse
better. Combining VT and SAF, the effects of SAVT are
threefold: 1) mitigating the effects of discontinuous edges by
changing center viewpoints, 2) better locating and segmenting
objects in changeable scales by converting view distances
to obtain scalable scene information, and 3) heightening the
feature toleration of distortion by increasing the distortion
diversity. It is different from the methods of adapting dis-
tortion or reducing distortion by adjusting filter sampling
methods [12], [13]. Benchmark results on 20 state-of-the-art
ISOD methods present the proposed dataset is challenging.
Moreover, qualitative and quantitative experiments verify the
proposed method is effective and outperforms the state-of-the-
art methods.

Our contributions are as follows:
• We construct a new large-scale challenging 360◦

ISOD dataset named ODI-SOD. It contains 6263 high-

resolution ERP images with object-level pixel-wise
annotation and is the largest 360◦ ISOD dataset to
the best of our knowledge.

• To our best knowledge, we should be the first one to
transfer humans’ observing process for panoramas to
deep feature learning for ERP images.

• Inspired by humans’ observing behaviors, we propose
a novel Sample Adaptive View Transformer (SAVT)
module, which keeps the complete panoramic view
and mitigates the effects of distortion, edge discon-
tinuity, and changeable scale objects in panoramic
scenarios.

• We make a benchmark on the proposed dataset using
2D ISOD methods, 360◦ panoramic ISOD methods
and our methods. Our approach outperforms existing
state-of-the-art methods.

II. RELATED WORK

In this section, we briefly review existing mainstream 360◦

panoramic datasets and 360◦ panoramic models.

A. 360◦ Panoramic Datasets

Datasets play an important role in object detection tasks
such as salient object detection [14], co-salient object de-
tection [15], RGB-D salient object detection [16], [17] and
camouflaged objects detection [18], [19]. For example, in the
2D domain, the remarkable progress of the ISOD task benefits
much from the construction of representative datasets [14],
[20]–[29]. Early datasets are often limited in the number of
images or scene complexity [14], [20]–[23]. Whereafter, two
large-scale and challenging datasets XPIE [24] and DUTS [25]
are introduced to overcome preceding shortcomings. Besides,
salient object datasets with instance-level annotation are pro-
posed [26]–[29] to promote the research.

Recently, some researchers [2], [7], [8], [30]–[42] turn at-
tention to saliency studies in 360◦ panoramic scenarios. While
most datasets only provide either eye-fixation groundtruth data
for saliency prediction or bounding box groundtruth for object
detection, which can promote salient object detection but is not
enough for accurate pixel-wise salient object segmentation in
panoramic scenarios. Therefore, three small-scale omnidirec-
tional image-based SOD datasets with pixel-wise annotation,
i.e., 360-SOD [7], F-360iSOD [2] and 360-SSOD [8], are
successively proposed for 360◦ ISOD. 360-SOD [7] is the first
360◦ SOD dataset and has 500 ERP images with pixel-wise
object-level annotation based on human fixation groundtruth.
F-360iSOD [2] is the first 360◦ SOD dataset providing pixel-
wise object level and instance level binary masks and contains
107 ERP images with 1,165 salient objects. The latest dataset
360-SSOD [8] has 1,105 semantically balanced ERP images
with only object-level masks. To our best knowledge, they are
the datasets available for the 360◦ ISOD task.

However, the available datasets are insufficient in number or
the scene complexity to understand the real-world panoramic
scenarios. It is expected that a large-scale high-resolution
dataset with rich and complex scenarios is built to alleviate
data constraints. Rich and complex scenarios are closer to the
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real world, the large-scale number is helpful for training mod-
els, and the high-resolution represents the detail information
better. Thus, in this paper, we introduce a large-scale 360◦

ISOD dataset with high-resolution and complex scenarios. The
general information of representative datasets for 2D ISOD
and 360◦ panoramic ISOD is shown in Tab.I.

B. 360◦ Panoramic Models

Large-scale 2D ISOD datasets such as DUTS [25] and
XPIE [24] have extensively promoted the development
of CNN-based ISOD methods [43]–[51]. However, 360◦

panoramic SOD models are minimal due to insufficient object-
level pixel-wise annotation [7], [8], [52]. In [7], a distortion
adaptive module for 360◦ ISOD is proposed to alleviate
the distortion effects from the equirectangular projection by
cutting the input equirectangular image into several blocks to
deal with different regions with various parameters. [8] put
forward a multi-stage coarse-to-fine SOD method for ODIs
to handle the effects of distortions and complex scenarios
using perspective images with less distortion and object-
level semantical saliency ranking. Moreover, [52] uses ERP
images and much less distorted cube-map images as network
input to extract and fuse features adaptively. Yet, they only
focus on alleviating distortion, ignoring the effects of edge
discontinuity and panoramic FoV. Similar problems also exist
in other 360◦-based tasks such as saliency prediction [53],
object detection [36], panoramic semantic segmentation [54],
3D room layout [12], and dense prediction [13].

For 360◦ scenarios, the continuous panoramic view is an
advantageous characteristic. Cutting a panorama into blocks
or using perspective images can lose the original panoramic
view and may bring more discontinuous edges, especially
for changeable scale objects in complex panoramic scenes.
Therefore, in this paper, we propose a 360◦ ISOD model
with the consideration of distortion, edge discontinuity and
changeable scale objects in panoramic FoV.

III. DATASET

There are two limitations in the existing three panoramic
datasets. Firstly, the most extensive dataset only contains 1105
images, which is insufficient to train a general deep network
and easily leads to overfitting. Secondly, the image resolutions
of the datasets are not satisfying for further research on
complex 360◦ scenarios. In this section, a new large-scale
dataset named ODI-SOD1 is introduced from the aspects of
dataset construction, dataset statistics and analysis.

A. Dataset Construction

1) Dataset Collection: The dataset ODI-SOD comprises
1,151 images collected from the Flickr website and 5,112
video frames selected from YouTube. All panoramas are in
equirectangular projection format (the ratio of height and
width is strictly 2:1), and the resolutions are not less than 2K.
During collection, we search panoramic sources on Flickr and

1The ODI-SOD dataset will be published and can be downloaded via
https://github.com/iCVTEAM/ODI-SOD.git

YouTube with different object category keywords (e.g., human,
dog, building) referring to MS-COCO classes [55] to cover
various real-world scenes. In this way, we collect 8,896 images
and 998 videos, including different scenes (e.g., indoor, out-
door), different occasions (e.g., travel, sports), different motion
patterns(e.g., moving, static), and different perspectives. Then,
all videos are sampled into keyframes, and the unsatisfactory
images or frames (e.g., without salient objects, low quality) are
dropped out. Finally, 6,263 ERP source samples are selected
for the subsequent annotation.

2) Salient Object Annotation: Considering most 360◦ sce-
narios are complex and contain more than one object, there
always exist some ambiguous objects between saliency and
not saliency. It is necessary to select salient objects before
time-consuming annotation. Firstly, we require five researchers
to judge object saliency and select salient objects by voting.
Secondly, annotation aspects manually label binary masks
based on the chosen salient objects. Finally, five researchers
cross-check the binary masks to ensure accurate pixel-wise
object-level annotations. Some sample pairs have been shown
in Fig.1

3) Dataset Split: The dataset is divided into a test set with
2,000 images and a train set with 4,263 images for deep
network training. Note that all source frames from the same
video are divided into the same set, train set or test set, and
other source images/frames are randomly divided.

B. Dataset Statistics

To explore the main characteristics of the proposed dataset
and compare it with existing 360◦ ISOD datasets, we make
statistics on typical attributes of salient regions, including edge
discontinuity, distortion degree and max FoV coverage.

1) Discontinuity of Salient Object Regions: Different from
2D images, the left boundary and right boundary of 360-degree
images in ERP format are connected [35]. For a panorama,
if the central meridian crosses target salient object regions,
the complete and continuous salient object regions will be
divided into two discontinuous parts by the left and right
boundaries of its ERP image. Here, the discontinuity of salient
object regions at the boundaries is called discontinuous edge
effects, which is also one of the major challenges. For the
ERP images with discontinuous edge effects, it is usually
more difficult to obtain complete segmentations due to the
forced separation in space. Thus, it is significant to make
statistics about image proportions with discontinuous edge
effects. Fig.2 presents the percentage of images with edge
discontinuity and without edge discontinuity for the existing
360◦ ISOD datasets. It can be seen that our dataset has a more
balanced distribution and a larger number of images with edge
discontinuity compared with other datasets, which is beneficial
for exploring discontinuous edge effects.

2) Distortion of Salient Object Regions: The distortion
degrees of salient object regions usually change with their
locations, reaching a maximum at the polar regions and a
minimum on the equator. Given an ERP image I and its binary
groundtruth G with width w and height h, the coordinate
of point P can be represented as P = (x, y) on the 2D
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TABLE I
REPRESENTATIVE DATASETS FOR ISOD.

Task Dataset Year #Image #GT Res.[min, max] GT Level Description

ECSSD [14] CVPR’13 1,000 1,000 [139, 400] obj. includes many semantically meaningful
but structurally complex images

DUT-OMRON [20] CVPR’13 5,168 5,168 [139, 401] obj. one or more salient objects and
relatively complex background

PASCAL-S [21] CVPR’14 850 850 [139, 500] obj. multiple salient objects,
total 1296 relatively salient object instances

2D
IS

O
D

MSRA10K [22] TPAMI’14 10,000 10,000 [165, 400] obj. most are with only one salient
object and simple background.

HKU-IS [23] CVPR’15 4,447 4,447 [100, 500] obj. most have either low contrast, complex
background or multiple salient objects

XPIE [24] CVPR’17 10,000 10,000 [128, 300] obj. covers many complex scenes with different
numbers, sizes and positions of salient objects

DUTS [25] CVPR’17 15,572 15,572 [100, 500] obj. from the ImageNet DET set and the SUN
data set, very challenging scenarios

ILSO-1K [26] CVPR’17 1,000 1,000 [142, 400] obj.& ins. contains instance-level salient objects
annotation but has boundaries roughly labeled

SOC [27] ECCV’18 6,000 6,000 [161, 849] obj.& ins. with salient and non-salient objects from
more than 80 common categories

SIP [28] TNNLS’20 929 929 [744, 992] obj.& ins. salient person samples that cover diverse
real-world scenes

ILSO-2K [29] CVIU’21 2000 2000 [142,400] obj.& ins. most contain multiple salient object instances,
complex background, or low color contrast.

360-SOD [7] JSTSP’19 500 500 [409, 1024] obj. ERP images from five panoramic
video datasets with fixation groundtruth

3
6
0
◦

IS
O

D

360-SSOD [8] TVCG’20 1105 1105 [546, 1024] obj. ten categories, ERP images
from 677 panoramic videos

F-360iSOD [2] ICIP’20 107 107 [1024, 2048] obj.& ins.
107 panoramic images,

1,165 salient objects, 9 images
without any salient object annotations

ODI-SOD 2022 6263 6263 [1024, 11264] obj.
6263 panoramic images captured in
real-world scenes and each image

has pixel-wise annotation

Fig. 2. The percentage statistics of images with edge discontinuity (marked
for Yes) and without edge discontinuity (marked for No).

pixel plane or P = (λ, ϕ) on the sphere surface using
longtitude and latitude, in which x ∈ X = {0, 1, ..., w −
1}, y ∈ Y = {0, 1, ..., h − 1}, λ ∈ Λ = [−180◦, 180◦],
ϕ ∈ Φ = [−90◦, 90◦], ϕ = E(y) and E is the inverse
projection operator. Based on G, we can get the salient area ay
of each row on the ERP pixel plane and the corresponding area
sϕ on the sphere surface obtained, in which sϕ = ay ·cosϕ. To
quantize the distortion, for each image, we define the distortion
degree D of the salient object regions as follows:

(a) (b)

Fig. 3. The statistical distribution of images with different distortion degrees.
(a) The histogram distribution. (b) The cumulative distribution.

D =
1

n

n−1∑
j=0

ayj
sϕj

=
1

n

n−1∑
j=0

1

cosϕj
, (1)

here, ϕj = E(yj) and (yj , ϕj) ∈ Q = {(yj , ϕj)|yj ∈
Y, ϕj ∈ Φ, sϕj > 0}, and n is the number of elements in
set Q. From Eq.1, we can find the distortion degree of salient
object regions in an ERP image mainly depends on the vertical
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Fig. 4. Examples of image and groundtruth pairs with different distortion
degrees.

Fig. 5. Horizontal and vertical FoV of salient object regions.

FoV coverage and horizontal-wise area ratio of salient regions,
which is a general measure of the distortion degree and has
no direct relation with the number and area of salient regions.
Resizing all images in datasets to the same resolution and
calculating their distortion values, the statistical distribution
of images with different distortion degrees are counted and
shown in Fig.3. We can find that our dataset has a larger
range of distortion degree distribution than other datasets.
For example, in Fig.3(b) the distortion degrees of our dataset
range from 1 to about 11, while the best of others range from
0 to about 7. Besides, the proportion of images with large
distortion degrees in our dataset is much larger than that in
other datasets. For example, in Fig.3(a) our dataset still has
obvious distribution when the distortion degree is larger than
3. In Fig.3(b), for other datasets the percentages of images
with distortion degrees less than 3 reach more than 90%,
which means the percentages of images with distortion degrees
larger than 3 are less than 10%, while for our dataset, the
percentage of images with distortion degrees larger than 3 is
about 30%. Moreover, in Fig.4 we provide some sample pairs
with different distortion degrees, presenting the reasonability
of the above distortion degree formulation.

3) FoV Coverage of Salient Object Regions: ODIs can
sample the entire viewing sphere surrounding its optical center,

Fig. 6. A diagram of the viewport. P is the tangent point of the sphere and
viewport, i.e., the viewpoint. Points A, B, C, and D are the center points
of viewport edges. FoVH and FoVV are the horizontal and vertical fields of
view, respectively.

a 360◦× 180◦ FoV [1], [2]. Each salient object region covers
a horizontal FoV and a vertical FoV, and the covered hori-
zontal/vertical FoV can reflect the horizontal/vertical scale of
the salient object region. Usually, the vertical FoV coverages
have more balanced distributions than the horizontal FoV
coverages since salient regions are stretched more horizontally.
To obtain holistic distributions of each dataset, calculate the
max horizontal/vertical FoV coverage of salient regions in
each ERP image and plot the histogram distribution in Fig.5.
We find that the percentage of images decreases with the
covered horizontal FoV increasing, and there are fewer images
when the covered horizontal FoV is larger than 240◦ except
in our dataset. For vertical FoV, the percentage of images
reaches the maximum in [20◦, 60◦]. The max vertical FoV
coverages of most images in other datasets are smaller than
120◦. Compared with other datasets, our dataset has more
balanced and smooth distributions. It has a larger percentage
of images with targets covering large FoVs, which indicates
our dataset is more challenging due to the general existence
of salient regions with different scales.

C. Dataset Analysis
From the dataset statistics, we find that discontinuous edge

effects and different degrees of distortions are unavoidable
due to the equirectangular projection and that different scales
of salient regions are very common in complex panoramic
scenes. In some cases, these characteristics can occur at the
same time, which makes discontinuous edge effects, diverse
distortion degrees and changeable object scales become main
challenges of the 360◦ ISOD task. Therefore, it is necessary
to design an effective model to solve above problems.

IV. APPROACH

To overcome above problems, we present our overall approach
as shown in Fig.7, which consists of the encoder, decoder
and the proposed Sample Adaptive View Transformer (SAVT)
module that has two sub-modules View Transformer (VT) and
Sample Adaptive Fusion (SAF). To better understand the two
modules, we first introduce basic concepts in Sec. IV-A. Then,
we describe the overall framework of our method in Sec. IV-B.
Subsequently, Sec. IV-C illustrate the proposed SAVT in detail.

A. Preliminary
In this part, we briefly introduce the process and characteris-

tics of the equirectangular projection and explain the viewport
and viewpoint used in panoramas and Möbius transformations.
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Fig. 7. The framework of our method and the proposed module SAVT with two sub-modules, View Transformer (VT) and Sample Adaptive Fusion (SAF).
Specifically, VT contains three sub-branches Fh, Fv and Fzm. Fh means horizontal view transformer, Fv means vertical view transformer and Fzm means
zooming view transformer.

1) Viewport: As shown in Fig.6, in panoramic vision, when
looking at the point P (λ, ϕ) from the sphere center O with
the horizontal and vertical field of view FoVH and FoVV,
respectively, we can see a region R of the sphere surface, and
P is the center of view (i.e., viewpoint). The points on the
sphere region R can be projected to a rectangular plane tangent
to the sphere surface at point P by gnomonic projection. The
tangent plane is defined as the viewport as [56], [57] do. The
distance from O to P is called view distance in the study.

2) Möbius Transformation: Möbius transformations are
one-to-one, onto and conformal (angle preserving) maps of the
so-called extended complex plane [58]. The extended complex
plane is given by C∞ = C ∪ ∞. A Möbius transformation
f : C∞ → C∞ is a map

f(z) =
az + b

cz + d
, a, b, c, d ∈ C, ad− bc 6= 0, (2)

where a,b,c and d are constant complex numbers satisfying
ad− bc 6= 0.

The Riemann sphere is a model of C∞, which is homeo-
morphic to the two-dimensional sphere [59]

S2 = {(xs, ys, zs) ∈ R3|x2s + y2s + z2s = 1}. (3)

We identify the complex plane C with the equitorial plane
x3 = 0, and set the North pole N = (0, 0, 1). If the line from
N to P intersects the complex plane in exactly one point
z ∈ C, then the map SP : S2 \ N → C which assigns a
point P ∈ S2 to the point z ∈ C is called the stereographic
projection [58], which is a bridge between R3 and C∞. For
P = (xs, ys, zs) ∈ S2 \N and z = x+ iy ∈ C, SP is given
by

SP : (xs, ys, zs)→
xs

1− zs
+ i

ys
1− zs

. (4)

For ODIs, ERP is just one of the projection formats. The
vanilla representation is the sphere surface representation, also
called visible sphere, fully representing the original field of
view with 360◦ longitude by 180◦ latitude. Therefore, Möbius
transformations can be applied to ODIs, which is vital for the
proposed method.

B. Overall Framework

To take advantage of existing mature 2D CNNs, we take into
account the classic U-shape structure and add the proposed
tailored delicate SAVT module aiming at ODIs. The overall
framework is shown in Fig. 7. The input and output are both
in the ERP format.

For the encoder, the backbone network uses ResNet-50 [60]
removed the last global pooling and fully connected layers
for the pixel-level prediction. For the decoder, the output
features of the encoder pass through the channel adaption
modules and feature fusion modules FFM, and then transmit to
SAVT. Each FFM connecting with {Res2, Res3, Res4} fuses
the features of the current stage and adjacent higher stage
into enhanced features for SAVT in the current stage. The
FFM in stage 5 ignores the upsample interpolation and concat
operations at the entrance. Each SAVT connects with a mask
head consisting of a convolution layer with kernel 3 ∗ 3 as the
channel compression layer and an upsampling interpolation
operation. All mask heads are used for side-output supervision
in the training stage. The progressive strategy from coarse to
fine is beneficial for SOD tasks.

The proposed SAVT contains two parallel sub-modules,
View Transformer (VT) and Sample Adaptive Fusion (SAF).
VT has three branches Fh, Fv, Fzm corresponding to different
transformations to simulate the human observing process of
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changing viewpoints or view distances, and SAF is used to
adjust the output values of other parallel branches. Next, we
present it in detail.

C. Sample Adaptive View Transformer

1) View Transformer Types: No matter the ODIs are dis-
played in the desktop setting or head-mounted VR, what can
be seen is very limited at each moment. We have to change our
viewpoint or adjust view distance to obtain more information.
Inspired by this, for ERP image processing, we introduce rota-
tion and zooming, the two kinds of transformation, to simulate
the observing process of looking left and right (branch Fh),
up and down (branch Fv), far and near (branch Fzm).

2) View Transformer Formulation: An ODI represented as
the Riemann sphere can use different Möbius transformations,
making the panoramic scene keep continuous in panoramic
view after transformation.

About rotation, a map f : C∞ → C∞ is called a rotation of
C∞ if the map SP−1 ◦ f ◦ SP : S2 → S2 is a rotation [58].
Möbius transformations represent rotations if and only if c =
−b, d = a, and ad− bc = |a|2 + |b|2 = 1, i.e.,

f(z) =
az + b

−bz + a
, a, b, c, d ∈ C, ad− bc = 1. (5)

For convenience, under a rotation of an angle θ ∈ [0, 2π] about
the axis passing through the origin in the direction along the
vector L = (l,m, n), based on the formulas of stereographic
projection and Riemann sphere [61], the complex number a, b
in f(z) can be derived as follows:

a = cos(θ/2) + i · n · sin(θ/2), (6)
b = (m− i · l)sin(θ/2). (7)

If L = (0, 0, 1), then a = cos(θ/2) + i · sin(θ/2), b = 0, then
there is

f(z) =
az

a
= eiθz, (8)

namely the canonic elliptic Möbius transformation, which can
simulate looking left or right. Similarly, if L = (0, 1, 0), then
it can simulate looking up or down.

About zooming, we set c = 0 and simplify Eq.2 as follows:

f(z) = az, a ∈ C. (9)

To facilitate, write a = ρeiθ. When θ = 0, ρ < 1, f(z) is
an origin-centered contraction, and when θ = 0, ρ > 1, f(z)
is an origin-centered expansion. The Möbius transformations
with contraction or expansion are called hyperbolic. We can
change the zooming center by rotating the target center to the
origin and inversely rotating it back after zooming.

Before applying to the feature space, we take the transform
process on an ERP image as an example for a simplified
description and better visualization of the geometric transfor-
mation. For each point Pe(u, v) on the ERP pixel plane, there
is a corresponding point Ps(λ, ϕ) (λ is longtitude, and ϕ is
latitude) on the sphere surface. The coordinate of Ps in R3 is
P (xs, ys, zs). Usually, the Ps(0, 0) is projected to the center

Fig. 8. Transform steps in View Transformer.

Fig. 9. Some transformation examples by View Transformer. Each row from
top to bottom corresponds to the original images, horizontal transformation,
vertical transformation, and zooming transformation. From left to right, the
horizontal transformation parameters are θ = 150◦, 100◦ and 180◦; the
vertical transformation parameters are all θ = 30◦; the zooming transfor-
mation parameters are ρ = 1.5(O = (0, 1, 0)), ρ = 0.5(O = (0, 1, 0)) and
ρ = 1.5(O = (−1, 0, 0)).

of equirectangular image. The transform relationship can be
represented as

Pe(u, v) = T (P (x, y, z)), (10)

P (x, y, z) = T−1(Pe(u, v)), (11)

where T (· ) is the transform function from the sphere surface
to the ERP pixel plane, and T−1(· ) is its inverse transform
function.

As shown in Fig.8, for a given ERP image, the whole
process is divided into five steps: 1) first back-project the ERP
pixel plane to the sphere surface; 2) through stereographic
projection SP , get its representation in the extended complex
plane C∞, 3) make Möbius transformations in C∞; 4) back-
project to the Riemann sphere after transformations; 5) project
to the ERP pixel plane from the sphere surface. The simplified
formula is as follows:

P
′

e = T (SP−1(f(SP (T−1(Pe))))).

= F (Pe).
(12)

Here, P
′

e is the point on the ERP image after view trans-
formation. The whole process of transformation is reversible,
represented as F−1(· ). By doing this, for an ERP image, we
can get the transformation images under different views, and
the panoramic views are kept simultaneously. Fig. 9 shows
some transformation examples of images. It can be seen that
transformations keep the complete panoramic view and obtain
appearances under diverse views.
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Fig. 10. View Transformer branches. (a) Horizontal rotation branch with Fh.
(b) Zooming branch with Fzm. In (a), θi, i ∈ [1, n] is the rotation degree
and Lh is the rotation axis. In (b), ρi, i ∈ [1,m] is the zooming factor and
Om is zooming center.

3) Refine the Feature Space: In the study, we use the
transforming process to refine the feature space. Then, each
Pe or P

′

e corresponds to a feature position before or after
transformation. The feature value vp at the feature point p =
(i, j, k) is mapped to the target position p′ = (i′, j′, k) through
transformation, in which i, i′ ∈ [0, h − 1], j, j′ ∈ [0, w − 1],
k ∈ [0, c−1], h is the height of the input feature, w is the width
and c is the channels. Theoretically, in the pure geometric
transformation, the feature value is unchanged. The geometric
transformations contribute to rich feature appearances under
different views, which is view-aware. Thus, by feat of the
transformed features, we can learn more appropriate features
and fuse them after inverse transformation.

Fig.10 shows more details about branches of VT, in which
the vertical branch is not contained because it is similar to
the horizontal branch except for the vector Lv = (0, 1, 0).
Fh, Fv, Fzm contain different numbers of sub-branches, and
each sub-branch corresponds to different transform parame-
ters. For Fh, Lh is fixed and the degree θi, i ∈ [1, n] is the
horizontal rotation degree of looking left or right. For Fv , Lv
is fixed and the degree parameter is the vertical rotation degree
of looking up or down. For Fzm, Om is like our viewpoint
and ρi, i ∈ [1,m] controls looking near or far.

4) Sample Adaptive Fusion: To make better use of these
transformation features, we perform an adaptive fusion of
these features to adapt to different samples. This fusion process
is expected to be simple and efficient. Here, we use a SENet
block [62] to realize it by learning an adaptive weight for
each type of transformation branch and the original learning
branch (see Fig 7). Then fuse the weighted features by a concat
operation in the channel dimension, as follows:

Vf = Concat(ωk · Vk), k = 0, 1, 2, 3, (13)

where V0 corresponds to the original feature learning branch
without any geometric transformation, V1 and V2 correspond
to the two rotation branches, V3 corresponds to the zooming
branch, and ωk is the function of the original input feature
which depends on the input sample. Thus, we called the
process Sample Adaptive Fusion. Through SAF, the trans-
formed features can be adaptively fused and better represent
the current sample.

Fig.11 shows the gradient class activation maps
(CAMs) [63] of some representative samples with objects

that are obviously distorted or with discontinuous edge
effects or on large or small scales. From Fig.11 we find
that the output features (the forth row) of SAVT are much
better than its input (the third row), which indicates SAVT
is effective. Specifically, there always exists at least one
transform branch outputting better features in some regions
for different samples, which suggests that VT offers diverse
and helpful candidate features. Moreover, the output features
of different branches are integrated better by SAF adjusting
weights, which shows VT and SAF are combined effectively.

Fig. 11. Visual examples of gradient CAMs of the SAVT module. (a) Input
images. (b) Groundtruth maps. (c) CAMs based on input features of SAVT. (d)
CAMs based on output features of SAVT. (e) CAMs based on output features
of the horizontal rotation branch. (f) CAMs based on output features of the
vertical rotation branch. (g) CAMs based on output features of the zooming
branch.

V. EXPERIMENTS

In the section, we first benchmark current state-of-the-art
2D-based SOD methods and 360◦-based SOD methods on the
proposed dataset ODI-SOD. Then we choose representative
methods to train on our dataset and compare with the proposed
method. Furthermore, we verify and analyze the effectiveness
of the proposed method in the ablation study.

A. Experimental Settings

1) Dataset and Evaluation Metrics: We conduct exper-
iments on the proposed dataset ODI-SOD, which contains
4,263 training images and 2,000 testing images. To quanti-
tatively evaluate the performance of methods, we utilize the
common metrics for SOD, namely the mean absolute error
(MAE), F-meansure (Fβ), weighted F-measure(wFβ) [64],
max F-measure (maxF ), S-measure (Sm) [65], E-measure
(Em) [66], [67]. F-measure indicates the trade-off result
between precision and recall and here we set β2 = 0.3 to
emphasize more precision than recall as in [68].
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TABLE II
BENCHMARKING RESULTS OF THE SOTA METHODS ON THE ODI-SOD TEST SET BEFORE TRAINING BY ODI-SOD TRAIN SET.

Methods Year Type Backbone Train set MAE↓ Fβ↑ wFβ↑ Sm↑ Em↑ maxF↑
GCPANet [46] 2020 AAAI 2D SOD ResNet 50 DUTS-TR 0.128 0.460 0.428 0.647 0.669 0.568
MINet-R [45] 2020 CVPR 2D SOD ResNet 50 DUTS-TR 0.123 0.435 0.399 0.624 0.664 0.528
ITSD [69] 2020 CVPR 2D SOD ResNet 50 DUTS-TR 0.137 0.450 0.427 0.635 0.655 0.538
F3Net [70] 2020 AAAI 2D SOD ResNet 50 DUTS-TR 0.133 0.423 0.387 0.615 0.655 0.519
DFI [71] 2020 TIP 2D SOD ResNet 50 DUTS-TR 0.108 0.460 0.430 0.654 0.674 0.570
PFSNet [72] 2021 AAAI 2D SOD ResNet 50 DUTS-TR 0.141 0.421 0.388 0.609 0.649 0.514
CTDNet [51] 2021 MM 2D SOD ResNet 50 DUTS-TR 0.138 0.423 0.389 0.610 0.662 0.509
VST [50] 2021 ICCV 2D SOD T2T-ViT DUTS-TR 0.135 0.428 0.402 0.621 0.656 0.518
PAKRN [9] 2021 AAAI 2D SOD ResNet 50 DUTS-TR 0.092 0.556 0.518 0.694 0.729 0.642
DCN [73] 2021 TIP 2D SOD ResNet 50 DUTS-TR 0.125 0.417 0.383 0.613 0.648 0.514
SOD100K [74] 2021 TPAMI 2D SOD ResNet 50 DUTS-TR 0.198 0.288 0.245 0.544 0.543 0.401
PSGLoss [75] 2021 TIP 2D SOD ResNet 50 DUTS-TR 0.116 0.439 0.392 0.616 0.675 0.521
SCASOD [76] 2021 ICCV 2D SOD ResNet 50 DUTS-TR 0.083 0.455 0.391 0.625 0.582 0.475
FastSaliency [77] 2021 TIP 2D SOD ResNet 50 DUTS-TR 0.185 0.319 0.287 0.557 0.575 0.429
PurNet [78] 2021 TIP 2D SOD ResNet 50 DUTS-TR 0.119 0.436 0.400 0.622 0.678 0.535
PoolNet [79] 2022 TPAMI 2D SOD ResNet 50 DUTS-TR 0.101 0.466 0.419 0.647 0.687 0.576
RCSB [80] 2022 WACV 2D SOD ResNet 50 DUTS-TR 0.108 0.490 0.427 0.630 0.692 0.561
ZoomNet [10] 2022 CVPR 2D SOD ResNet 50 DUTS-TR 0.120 0.465 0.429 0.644 0.670 0.558
TRACER [81] 2022 AAAI 2D SOD ResNet 50 DUTS-TR 0.099 0.460 0.418 0.630 0.691 0.530
DDS [7] 2019 JSTSP 360◦ SOD ResNet 50 360-SOD 0.070 0.553 0.493 0.694 0.751 0.648

Fig. 12. Visual testing examples of representative state-of-the-art algorithms before finetuning on the ODI-SOD train set.

2) Implementation Details: In the training stage, we use the
pre-trained ResNet-50 model [60] to initialize the parameters
of the feature encoder and use a standard stochastic gradient
descent algorithm to train the whole network end-to-end with
the cross-entropy loss and IoU loss. In our network encoder,
the initial learning rate is set to 0.05 with a weight decay of
0.0005 and momentum of 0.9. For the rest layers, the learning
rates are ten times the encoder. We train the proposed method
with a mini-batch of size 16 about 64 epochs by a single
GTX 3080 GPU. In the testing stage, only the output of Hd2
in Fig.7 is used for the final prediction result. In both training
and testing, the input images are resized to 512×256 resolution
for comparison with other 360◦ SOD methods.

B. Benchmarking Results

To verify the challenges of the proposed dataset ODI-
SOD, in Tab.II we list the performances of 20 state-of-
the-art (SOTA) 2D SOD and 360◦ SOD methods on our
test set without finetuning on our train set. The methods
include GCPANet [46], MINet-R [45], ITSD [69], F3Net [70],
DFI [71], PFSNet [72], CTDNet [51], VST [50], PAKRN [9],

DCN [73], SOD100K [74], PSGLoss [75], SCASOD [76],
FastSaliency [77], PurNet [78], PoolNet [79], RCSB [80],
ZoomNet [10], TRACER [81] and DDS [7]. From Tab.II we
find that all listed methods perform not well on the ODI-SOD
test set including the 360◦-based method DDS [7] trained by
the 360-SOD train set, which suggests that currently available
models have poor generalization ability over the proposed
dataset. It comes down to two reasons. Firstly, a gap exactly
exists between 2D SOD datasets and 360◦ omnidirectional
SOD datasets, which makes the outstanding 2D methods have
sharp drops in performance. Secondly, the proposed dataset is
very challenging and beyond the cognitive capabilities of the
existing datasets and models.

For further comprehensive analysis, some testing results of
representative superior SOTA algorithms in Tab.II are shown
in Fig.12. From the prediction maps, we find that the less
distorted or evident salient target regions can be handled
by most of the methods. In contrast, the severely distorted
regions can easily lead to segmentation failure due to their
apparent differences from existing knowledge and perception.
The target objects with discontinuous edge effects and the
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TABLE III
PERFORMANCE COMPARISON OF OUR METHOD, 360◦-BASED METHOD AND THE TOP-5 2D-BASED SOTA METHODS ON THE ODI-SOD TEST SET AFTER

FINETUNING ON THE ODI-SOD TRAIN SET.

Methods Year Type Params (M) MACs (G) MAE↓ Fβ↑ wFβ↑ Sm↑ Em↑ maxF↑
PAKRN [9] 2021 AAAI 2D SOD 141.06 228.85 0.106 0.408 0.410 0.632 0.611 0.727
PoolNet [79] 2022 TPAMI 2D SOD 69.56 229.10 0.045 0.631 0.652 0.804 0.798 0.790
RCSB [80] 2022 WACV 2D SOD 27.25 454.23 0.067 0.590 0.488 0.675 0.755 0.652
ZoomNet [10] 2022 CVPR 2D SOD 32.38 90.44 0.039 0.712 0.689 0.805 0.863 0.804
TRACER [81] 2022 AAAI 2D SOD 3.90 2.78 0.044 0.667 0.648 0.770 0.850 0.740
DDS [7] 2019 JSTSP 360◦ SOD 27.23 60.36 0.045 0.630 0.635 0.791 0.808 0.761
our 2022 360◦ SOD 56.86 42.87 0.035 0.759 0.738 0.831 0.886 0.822

small-scale or large-scale objects are also difficult to be
completely segmented out. It illustrates that severe distortions,
discontinuous edge effects and changeable scales are three
major challenges in the proposed 360◦ dataset.

C. Comparison with State-of-the-arts

1) Quantitative Evaluation: To demonstrate the effective-
ness of the proposed method, we selected the Top-5 in
performance from 2D SOD methods with available training
code in Tab.II, i.e., PAKRN [9], PoolNet [79], RCSB [80],
ZoomNet [10] and TRACER [81]. Then, for a fair comparison,
we finetune these five models, DDS [7] and our proposed
model on the ODI-SOD train set. After finetuning, their
evaluation results on the ODI-SOD test set are listed in Tab.III.
We can see that the overall metric scores are much better
than those before finetuning in Tab.II for the selected methods
except for PAKRN [9]. One primary reason may be that
PAKRN [9] needs multi-stage joint training, which is not
easy for a new task. Surpassing PAKRN [9] and DDS [7],
ZoomNet [10] becomes the best one, but the performance is
nowhere near as good as on 2D SOD datasets, which illustrates
the challenge of the proposed dataset again. Compared with the
other methods, our method demonstrates sustained advantages
and significant improvements on all the listed metrics and has
become the new state-of-the-art. It verifies that the proposed
method is effective for the 360◦ ISOD task.

We sort the ODI-SOD test samples by different attributes,
including the target foreground ratio, max horizontal FoV,
distortion degree and discontinuous edge effect. To further
evaluate the methods’ performance variation trends with the
attributes, from the finetuned models in Tab.III we choose the
best 2D model ZoomNet [10], the 360◦ model DDS [7] and
our model to make predictions, statistics and analysis. Based
on the predicted maps we compute the methods’ wFβ scores
on each sample. Then, the statistic scores about discontinuous
edge effects are shown in Tab.IV, and the scores about the
other attributes are plotted as broken line graphs in Fig. 13.
For better visualization and analysis, the lines are smoothed by
a moving averaging window with size 50, and the secondary
Y-axis is the attribute values.

From Tab.IV we observe that our method outperforms other
methods on all listed criteria and demonstrates significant
advantages on MAE, wFβ and Sm measures. It suggests that
our method has fewer false predictions and better overall
performance and that our prediction maps have more similar

TABLE IV
PERFORMANCE ON THE ODI-SOD TEST SUBSET WITH DISCONTINUOUS

EDGE EFFECTS.

Methods MAE↓ Fβ↑ wFβ↑ Sm↑ Em↑ maxF↑
ZoomNet [10] 0.071 0.801 0.752 0.797 0.869 0.860
DDS [7] 0.074 0.778 0.733 0.79 0.875 0.837
our 0.065 0.807 0.776 0.82 0.875 0.865

structures with ground-truth maps. Overall, our method is
effective for the discontinuous edge effects in panoramas.

From Fig.13 we can notice that the performances of all
the listed methods sharply decrease when processing intricate
image samples such as those with very large/small target
foreground area ratios, very wide/narrow FoV coverages and
severe distortions. However, our method still presents consis-
tent advantages for most image samples and the advantages
become more and more evident as the target foreground area
or FoV coverage gets smaller and smaller, which indicates that
our method is better at processing small targets. On the whole,
for samples with different attributes, our method performs
better than other methods.

2) Qualitative Evaluation: Fig.14 shows some representa-
tive results of existing SOTA methods and our method on
ODI-SOD test set. We can perceive that most methods fail
to segment severely distorted regions well, while our method
has more robust adaptability to different distortions (e.g., the
first two rows in Fig.14). When processing the object with
discontinuous edge effects especially one of the separated parts
is very small, other methods usually ignore its part regions,
in contrast, our method can segment it more completely (e.g.,
the middle two rows in Fig.14). For changeable scale objects
especially small objects, our method also outperforms other
methods (e.g., the last two rows in Fig.14). Generally, our
method can obtain better, more complete, more continuous and
more uniform segmentation maps than other methods, which
is effective for 360◦ ISOD task.

3) Complexity Analysis: In addition to the above evalu-
ations, complexity analysis of the finetuned models is also
conducted. We calculate the parameters and MACs (Mul-
tiply–Accumulate Operations) of the finetuned models and
present the results in Tab.III. From Tab.III, we see that
method TRACER [81] has the best parameters and MACs
but relatively worse performance, and method ZoomNet [10]
has fewer parameters but more MACs. In general, our method
obtains a balance between model complexity and performance.
For 512 × 256 input images, our method runs at a speed of
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(a) (b) (c)

Fig. 13. Performance variation trends with sample attributes including (a) target foreground ratio, (b) max horizontal FoV coverage and (c) distortion degree.
In each subfigure, the red line constitutes attribute values and the green line is our trends.

Fig. 14. Visual testing examples of representative state-of-the-art algorithms after finetuning on the ODI-SOD train set.

TABLE V
ABLATION STUDY OF OUR METHOD ON THE ODI-SOD TEST SET. NOTE: HRB, VRB AND ZB ARE THE HORIZONTAL ROTATION, VERTICAL ROTATION

AND ZOOMING BRANCHES IN VT.

Method HRB VRB ZB SAF MAE↓ Fβ↑ wFβ↑ Sm↑ Em↑ maxF↑
Baseline 0.04 0.73 0.713 0.817 0.875 0.803
Baseline+VT H X 0.037 0.746 0.728 0.826 0.88 0.807
Baseline+VT V X 0.038 0.739 0.719 0.822 0.876 0.805
Baseline+VT Z X 0.038 0.742 0.725 0.824 0.878 0.811
Baseline+VT HV X X 0.038 0.751 0.728 0.822 0.879 0.818
Baseline+VT HZ X X 0.037 0.751 0.731 0.827 0.88 0.816
Baseline+VT VZ X X 0.037 0.741 0.727 0.824 0.877 0.813
Baseline+VT X X X 0.038 0.75 0.734 0.83 0.882 0.818
Baseline+SAVT(VT+SAF) X X X X 0.035 0.759 0.738 0.831 0.886 0.822

7.6 FPS on one GTX 2080Ti GPU.

D. Ablation Study

To demonstrate the effectiveness of the proposed module
SAVT with two sub-modules VT and SAF, we further conduct
ablation studies on the ODI-SOD test set. The three branches
in VT are also considered for detailed analysis. First, based on
the baseline model, we add the gimped VT versions with only
a single branch or two branches to test their effectiveness.
Then, we try the complete submodel VT and SAF. The
experimental results are shown in Tab.V.

1) Effectiveness of VT: From the first four rows in Tab.V we
observe that all the performances can be improved when only
using one transform branch, especially the versions VT H and
VT Z, which indicates the single transform branch is effective.
When randomly adopting two transform branches in VT, most
metrics get better than those using only one, suggesting that
the models with two transform branches still work well.
When utilizing the complete VT, the overall performance

is further enhanced. Compared with the baseline, the MAE
score becomes 0.038 from 0.040 and the Fβ increases to
0.759 from 0.730. It verifies the sub-model VT is effective.
It is worth mentioning that more transform branches mean
more diversities of features. This requires a stronger feature
fusion operation to obtain the desired features. Next, we will
further verify the ability of SAVT to fuse different types of
transformed features.

2) Effectiveness of SAF: SAF is based on VT to assist
subsequent feature fusion by adaptively adjusting the weights
of different types of transformed features. From Tab.V we
find that all the metrics are improved after using SAF. After
adding SAF, The MAE score becomes 0.035 from 0.038 and
the Fβ score becomes 0.759 from 0.750, which presents the
effectiveness of SAF.

Overall, the performance is significantly improved from the
baseline to our final model with the proposed SAVT. As shown
in Tab.V, the MAE score decreases to 0.035 from 0.040 and
the Fβ score increases to 0.759 from 0.730. It shows the
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TABLE VI
INFLUENCE OF ROTATION DEGREES IN THE HORIZONTAL/VERTICAL

ROTATION BRANCH (HRB/VRB) AND ZOOMING SCALE FACTORS IN THE
ZOOMING BRANCH (ZB). FOR HRB, DEGREES RANGES FROM −180◦ TO

180◦ EXCEPT 0◦ .

Parameters MAE↓ Fβ↑ wFβ↑ Sm↑ Em↑ maxF↑
Degree step HRB

30◦ 0.035 0.758 0.738 0.829 0.885 0.823
45◦ 0.037 0.754 0.743 0.833 0.884 0.816
60◦ 0.039 0.748 0.738 0.828 0.879 0.816

Degrees VRB
[±30◦] 0.035 0.758 0.738 0.829 0.885 0.823

[±60◦,±30◦] 0.039 0.745 0.729 0.827 0.876 0.814
[±45◦,±30◦] 0.039 0.745 0.727 0.826 0.878 0.812
Scale factors ZB

[0.8,1.2,0.7,1.3] 0.035 0.758 0.738 0.829 0.885 0.823
[0.8,1.2,0.6,1.4] 0.038 0.749 0.731 0.826 0.88 0.814
[0.7,1.3,0.5,1.5] 0.039 0.747 0.726 0.823 0.88 0.817

Fig. 15. Failure cases of our method. Rows from top to bottom: images,
ground-truth masks and our results.

proposed module SAVT is very effective for the 360◦ ISOD
task.

3) Influence of Parameters in VT: To investigate the in-
fluence of transform branches’ parameters in VT, We try
several groups of parameters about the rotation degrees of
the horizontal/vertical branch and the scale factors of the
zooming branch based on the final model. From the results
in Tab.VI we find that for HRB the overall performance
decreases a little when the rotation degree becomes 45◦ from
30◦, and when the degree becomes 60◦ the performance is
more negatively affected. No smaller degree step is tried
as the angular resolution is enough for our task (e.g., 1.42
pixels per degree for a 512×256 ERP image). For VRB, we
choose ±30◦ since the extra larger degrees cannot bring better
performance. It is reasonable and realistic as the vertical field
of view range is ±90◦ and we usually do not look up or
down too much. Moreover, the ERP feature appearance is
more sensitive to vertical rotation than horizontal rotation.
The inappropriate larger degrees may bring overly deformed
appearance and unexpected distractors, which is not beneficial
for feature perception and performance gains. As for ZB, the
first group parameters are best. Both smaller and bigger scale
factors are not suitable. It is also realistic as excessive zooming
in/out cannot help to learn better features and appropriate
transformations are more important.

E. Failure Cases
Beyond the successful cases, we show representative failure

cases in Fig.15. We find when the scene contains many objects
or the target object is camouflaged, our approach is more
prone to failure. For example, the scenes in Fig.15(a) and
Fig.15(b) contains many objects while our method cannot
detect the targets or miss some targets. To some extent, it
is caused by the way of defining salient objects as it is
hard to define salient targets in panoramic scenes with many
objects, especially when the objects have similar saliency.
Besides, when target objects are similar with background or
camouflaged in background (e.g., the boat in Fig.15(c) or the
animal in Fig.15(d)), our method also fails to find the targets.

F. Discussion
Although our method is effective and outperforms the SOTA

methods, it has three limitations. Firstly, the adopted resolution
in the study is not large for panoramas with wide FoV and rich
information. Small resolutions can lose some important details.
Secondly, to use the mature 2D CNNs, the original spherical
images must be projected onto the 2D plane, resulting in
different degrees of geometrical distortion. Thirdly, the model
is not lightweight and efficient enough. Therefore, how to
make full use of the original image information and investigate
a highly efficient solution need to be further explored in
the future. In addition to methods, some special scenes can
also be explored. For example, the target objects in the
scene sometimes are concealed or camouflaged, “seamlessly”
embedded in their surroundings [18], [19], or the objects are
in the clutter [82], [83], which are challenging situations for
panoramic scenarios and should be further discussed in future
work.

VI. CONCLUSION

In this paper, we construct a 360◦ omnidirectional image-
based SOD dataset, namely ODI-SOD, to explore the salient
object detection in panoramic scenes. It has object-level pixel-
wise annotations on ERP images and is the largest dataset for
360◦ ISOD by far to our best knowledge. Moreover, inspired
by humans’ observing process, we propose a view-aware
salient object detection method for 360◦ ODIs, containing a
novel module SAVT with two submodels VT and SAF. VT
is designed to simulate the process of looking left and right,
up and down, far and near by changing the viewpoint or view
distance. SAF aims to adaptively fuse the output features of
transform branches and the original learning branch based
on different input samples. It can flexibly adjust the weights
of different transformed features and obtain better fusion
features. Integrated SAVT effectively mitigates the effects
of diverse distortion degrees, discontinuous edge effects and
changeable object scales. Furthermore, we conduct qualitative
and quantitative experiments to explore the proposed method
and verify its effectiveness.
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[58] J. Olsen, “The geometry of möbius transformations,” Rochester: Uni-
versity of Rochester, 2010.

[59] P. Blanchard, “Complex analytic dynamics on the riemann sphere,”
Bulletin of the American mathematical Society, vol. 11, no. 1, pp. 85–
141, 1984.

[60] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.
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