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Abstract—Salient Object Detection has boomed in recent years
and achieved impressive performance on regular-scale targets.
However, existing methods encounter performance bottlenecks in
processing objects with scale variation, especially extremely large-
or small-scale objects with asymmetric segmentation require-
ments, since they are inefficient in obtaining more comprehensive
receptive fields. With this issue in mind, this paper proposes a
framework named BBRF for Boosting Broader Receptive Fields,
which includes a Bilateral Extreme Stripping (BES) encoder,
a Dynamic Complementary Attention Module (DCAM) and a
Switch-Path Decoder (SPD) with a new boosting loss under the
guidance of Loop Compensation Strategy (LCS). Specifically,
we rethink the characteristics of the bilateral networks, and
construct a BES encoder that separates semantics and details
in an extreme way so as to get the broader receptive fields
and obtain the ability to perceive extreme large- or small-
scale objects. Then, the bilateral features generated by the
proposed BES encoder can be dynamically filtered by the newly
proposed DCAM. This module interactively provides spacial-wise
and channel-wise dynamic attention weights for the semantic
and detail branches of our BES encoder. Furthermore, we
subsequently propose a Loop Compensation Strategy to boost
the scale-specific features of multiple decision paths in SPD.
These decision paths form a feature loop chain, which creates
mutually compensating features under the supervision of boosting
loss. Experiments on five benchmark datasets demonstrate that
the proposed BBRF has a great advantage to cope with scale
variation and can reduce the Mean Absolute Error over 20%
compared with the state-of-the-art methods.

Index Terms—Salient object detection, receptive field, bilateral
extreme stripping, loop compensation.

I. INTRODUCTION

IN recent years, methods based on deep learning [1]–[6]
have made great progress in the Salient Object Detection

(SOD) field by virtue of powerful feature representation. For
example, methods [7]–[13] based on Convolutional Neural
Network (CNN) usually utilize multi-layer convolutions to
extract global semantics and local detailed features at the same
time. Methods [14] based on vision transformers abandon the
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Fig. 1. Comparisons between our BBRF and six state-of-the-art methods
in the scenarios with scale variation. Scale Rate represents relative value of
foreground pixel area ratio. (a) and (b): Quantitative comparison under MAE
and mean F-measure. (c) and (d): Visual comparison on large- and small-scale
objects.

current vision attention mechanism and provide a way to un-
derstand images from a holistic perspective. However, existing
methods still encounter the challenge: It is difficult to balance
the segmentation effects of objects with scale variation. As
shown in Fig. 1, CNN-based methods such as PA-KRN [8]
may generate more failure cases when dealing with large-
scale objects, while transformer-based methods such as VST
[14] may have trouble handling small-scale objects. Specifi-
cally, the predicted maps with large-scale objects have better
F-measure but higher Mean Absolute Error (MAE), while
those with small-scale objects have the opposite performance.
That is, there are asymmetric segmentation requirements for
extremely large or small objects.

To solve this challenge, the state-of-the-art methods seek to
design multi-scale modules or models. For instance, PoolNet
[15] proposes a multi-branch module to extract multi-scale
features by compressing features to different sizes through
pooling operations with different sampling rates. PFANet
[16] extracts rich-scale information in a multi-decoder model
through decoupling semantics and details to different decoders.
MINet [10] and PFSNet [7] make full use of the relationship
between adjacent features to obtain scale-aware information
while avoiding the introduction of noise. UTA [17] proposes
a Gated Multi-Scale (GMS) module to extract multi-scale
information separately in an efficient way. VST [14] utilizes a
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Fig. 2. Comparisons between our Loop Compensation Strategy and other
related methods. (a): FAM of PoolNet [15]. (b): Decoder of PFANet [16].
(c): GMS proposed in UTA [17]. (d): Proposed Loop Compensation Strategy.
Lines with different colors indicate different decision paths selected by a
switch.

pure transformer architecture to extract more powerful features
from a holistic perspective. In spite of impressive performance,
these methods may suffer from the following weaknesses:

1) The local perception mechanism of CNN methods limits
the range of their receptive fields, while the attention mecha-
nism between spatial regions of pure transformer is difficult to
ensure local details and efficiency. This contradiction makes
it difficult to efficiently segment objects with varying scales.
They may have difficulty balancing global perspective, precise
detail, and model efficiency.

2) As shown in Fig. 2, representative methods set up dif-
ferent forms of multi-stream structures to generate expressive
features. However, they often set one unique decision path or
ignore the correlation of different decision results. Here, the
decision path refers to a structure path of the network that can
generate results independently. Besides, the undifferentiated
training process between different paths or decoders such as
Fig. 2 (a) and (b) limits the scale specificity of the models.

Therefore, Constructing receptive fields with elasticity and
scale specificity may be of great significance for comprehen-
sive segmentation of objects with scale variation. For more
comprehensive receptive fields, this paper proposes a frame-
work named BBRF for Boosing Broader Receptive Fields,
which includes a Bilateral Extreme Stripping encoder with
Dynamic Complementary Attention Modules and a Switch-
Path Decoder with a Loop Compensation Strategy.

First, we rethink how to utilize the advantages of bilateral
structures for dealing with scale variation and propose Bilateral
Extreme Stripping to build a distinctive bilateral network
based on CNNs and transformers for the broader receptive
fields. That is, we separate semantic and detail information
as much as possible. The semantic branch can almost ignore
high-resolution details, while the detail branch only efficiently

extracts shallow high-resolution features. In this way, deep
semantics and shallow details can be efficiently extracted in
the transformer and CNN parts, respectively. To accommodate
performance and efficiency, we choose a lightweight CNN
and a simplified transformer to construct our BBRF. The
lightweight CNN keeps a high-resolution input unchanged to
extract local details, while the simplified transformer branch
is mainly responsible for extracting global semantics among
regions on the premise of the lowest possible input resolution.
In our setting, the input resolution of detail branches can be
set to a maximum of seven times the semantic branch. In this
way, we can better take into account the efficiency and more
comprehensive receptive fields.

Second, the Dynamic Complementary Attention Module is
proposed to provide dynamic attention enhancement between
our bilateral branches of Bilateral Extreme Stripping encoder
and realize more effective filtering of the broader bilateral
features. Unlike other self-attention modules, DCAM empha-
sizes dynamic associations between complementary branches.
The semantic branch provides dynamically adaptive spatial-
level attention weights for the detail branch, and the detail
branch simulates fluctuations between channels for the se-
mantic branch. Our DCAM emphasizes the spatial attention
of the CNN and the channel flexibility of the transformer
by weighting them mutually, which can provide more elastic
receptive fields. With DCAM, our BES encoder can not
only compensate for the limitations of convolutional receptive
fields but also build dynamic associations between transformer
feature channels.

Third, we further propose a novel and effective loop com-
pensation strategy to boost scale-specific views based on the
broader receptive fields. Different from Multi-Branch and
Multi-Decoder modules in Fig. 2 (a) and (b), LCS adopts
Loop chain compensation manner, that is, LCS serially trains
one unique decision path in each training iteration. Unlike
GMS [17], our LCS assigns convolutions with different dilated
rates for each path to enhance the ability of feature represen-
tation. More importantly, when calculating the loss for each
path, our LCS focuses on the pixel regions where previous
decision paths were incorrectly predicted. Accordingly, chain
relations between adjacent decision paths can be constructed.
All decision paths can form a sequential chain loop, which can
generate scale-specific receptive fields. With almost equivalent
parameters, LCS can improve the performance of the proposed
BBRF by a large margin.

The experimental results validate the performance and effi-
ciency of our BBRF, especially in handling scale variations.
Here, we highlight the following contributions.

1) We innovatively analyze the asymmetric segmentation
requirements of extremely large- and small-scale objects, and
consider more comprehensible receptive fields from both scale
elasticity and scale specificity enhancement. 2) We rethink the
advantages of bilateral structures and construct a Bilateral Ex-
treme Stripping network equipped with the proposed Dynamic
Complementary Attention Modules for more elastic receptive
fields including extremely large- or small-scale views. 3) We
further propose a novel yet effective Loop Compensation
Strategy to boost scale-specific views based on the broader
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receptive fields, which utilizes boosting loss to make each
decision path in SPD pay more attention to the predicted
errors of the previous path through boosting loss and break
the synchronization relationship of the error back-propagation
process. 4) Our method can better handle scale variation and
achieve a significant performance improvement over 16 state-
of-the-art methods. In particular, the MAE metric of our
method reaches 0.022 on ECSSD and 0.025 on DUT-TE,
which is 29% and 26% lower than the best results before.

II. RELATED WORK

Salient Object Detection aims to segment the visually sig-
nificant objects in the image, which can contribute to related
downstream tasks [18]–[20]. Despite the landmark progress
of salient object segmentation methods [21]–[27] based on
deep learning, scale variation has been a worthy challenge in
the field of SOD. Multi-scale object perception [16], [28]–
[32] requires simultaneous extraction of global semantics
and local details. To balance semantics and details, existing
methods often integrate multi-level features or design multi-
scale modules. We will review related work from these two
aspects.

A. Multi-feature integration

Recently, methods based on multiple features integration
have achieved impressive progress in SOD and related fields
[31], [33]–[39]. For example, DSNet [40] proposes to dy-
namically filter RGB-D image features using global guidance
information to obtain a more complete feature representation.
RRNet [41] proposes a multi-scale attention mechanism to
integrate semantic relational features. GLNet [42] considers
co-aggregating features from multiple images for Co-Salient
Object Detection. F3Net [43] proposes Fusion, Feedback and
Focus to detect salient objects and has achieved the best
performance at the time. ITSDNet [44] proposes to construct
the association between salient features and contour features,
which can effectively optimize the boundaries of salient ob-
jects. LDF [45] strips the features based on the distance from
the edge and iteratively optimizes the predicted maps for more
accurate results. PA-KRN [8] proposes to initially locate the
salient objects, and then segment them carefully. This strategy
can better balance detailed features and semantic features.

Besides, VST [14] utilizes the transformer [46] to detect
salient objects for the first time, which can construct patch-
level global features. In this way, the network can obtain a
global perspective. It can be seen that CNN methods pay
more attention to boundaries and details, while methods based
on transformers pay more attention to semantic features.
In contrast, we explore the differences between CNNs and
transformers in terms of semantics, details and computational
complexity, so as to make a better trade-off among them.

In addition, Conformer [47] first proposes to construct a
dual branch network based on transformer and CNN. However,
this paper rethinks such bilateral structures with the following
essential differences: 1) Efficient extreme stripping design: the
detailed feature resolution is seven times than the semantic
resolution in our framework, while the input resolution of

bilateral branches of the Conformer [47] does not differ
much, which may lead to redundant information and affect
efficiency. 2) Independent stripping branches: compared to
Conformer, which interpolates features in bilateral branches,
our independent features extraction of extreme-scale objects is
more suitable for their asymmetric segmentation requirements.
3) Dynamic complementary attention mechanism: compared
with the way that the converter directly converts bilateral
features, we use the proposed DCAMs to filter features to
better accommodate the scale variation of random samples.

B. Multi-scale perception

In the SOD field, enhancing multi-scale perception capa-
bilities by constructing multi-branch modules is an effective
strategy to improve feature representation capabilities. For
example, Pyramid Pooling Module (PPM) [48] is a typical
multi-branch module, in which each branch is down-sampled
to a different resolution to achieve multi-scale feature repre-
sentation. Atrous Spatial Pyramid Pooling (ASPP) [49] module
utilizes convolutions with different dilated rates in each branch
to achieve multi-scale feature extraction. PoolNet [15] uses
PPM for SOD for the first time and achieves the desired
performance results. BANet [1] proposes to improve ASPP
and obtains more powerful feature representation. DINet [50]
proposes to use parallel dilated convolutions to enrich the
network receptive field. PSGLoss [51] proposes to adaptively
capture multi-scale features though a branch-wise attention
mechanism. MMNet [52] explores a multi-stage fusion strat-
egy to obtain more complete multi-scale features.

Although the modules proposed by the above methods
can effectively increase the feature expression ability and
achieve impressive segmentation results, they suffer from
the performance bottleneck since they ignore to balance the
asymmetric requirements of object segmentation at different
scales. The original intention of the multi-branch model is to
allow different branches to capture specific features, but the
previous methods seldom consider the independence of each
branch and the mutual relationship between different branches.
Besides, although they can effectively expand the receptive
fields, it may be difficult for them to break the limitation
of local attention mechanism. In contrast, we propose a
loop compensation strategy to enhance the complementarity
between different paths in decoder. Each path calculates the
error separately and weights the error area of the previous
decision path.

III. METHODOLOGY

A. Overview

In this section, we will introduce the overview of the
framework. Our BBRF is built based on the encoder-decoder
structure but has its own uniqueness. First, we construct a
BES encoder for feature extraction and four DCAMs for
feature fusion. Distinguishing from existing bilateral models,
our BES encoder considers the extreme stripping of semantic
and detailed features, which stems from the following observa-
tions: 1. The emergence of the vision transformers provides a
new way for global feature perception, but the construction
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Fig. 3. The pipeline of the proposed method. This figure shows the training process of our BBRF. Different colors in the Switch-Path Decoder indicate
different paths.The paths are trained one by one, and the error area of the previous path is weighted in each iteration.

of global semantics leads to a large model computation.
Therefore, it is difficult to use the existing transformer models
directly for efficient SOD tasks such as Sal100K [53]. 2.
There are several contradictory points in semantic and detailed
information. Deeper global iteration tends to enhance the
semantic richness while polishing at shallow high resolution
is more suitable for detail extraction. In brief, by separating
details and semantic in an extreme manner, our BES encoder
and DCAM can efficiently obtain more elastic and broader
receptive fields.

The Switch-Path Decoder shown in Fig. 3 represents the
unique structure of our framework. Unlike existing typical de-
coders, SPD contains multiple decision paths. The design idea
of SPD is based on our considerations of existing multi-branch
structures. These structures are similar to existing integration
models, and the key to improve the overall performance is
to exploit the uniqueness of multi-branches and reduce re-
dundancy. Existing multi-branch structures rarely consider the
prediction relationships between different branches. Different
branches tend to receive the same action of the gradient back-
propagation process. This approach greatly limits the inde-
pendence of different branches. For this reason, we designed
SPD and Loop Compensation Strategy to explicitly constrain
the characteristics of different branches.

The forward inference process of the framework is shown
in Fig. 3. For a given input I ∈ RH×W×3, we sequen-
tially perform down-sampling and patch embedding operations
[54] to get Ip and then input I and Ip into Bdet and
Bsem, respectively. Bdet can get the intermediate feature
set D = {Di|i = 0, 1, ...,K − 1} of the corresponding
blocks. Similarly, the feature set of Bsem can be obtained:
S = {Si|i = 0, 1, ...,K−1}. We refer to the design of the
number of blocks in ResNet [55] and set K to four. Since the
feature shapes of Bdet and Bsem are different, the features
of Bdet need to be converted, which can be expressed as

S
′

i = C(U(R(Si))), where R represents the reshaping of
vector group features into planar features, U represents up-
sampling operation, and C represents 1× 1 convolution. Then
feature sets S′

and D are filtered through DCAM to generate
feature set Z, where Zi = DCAMi(Si,Di), i = 0, 1, ...,K−1.
The deepest feature Z3 ∈ RH

8 ×W
8 ×C only passes through

one decoding path, and other paths will not calculate the
gradient here. Assuming that the current x-th path is activated,
the error-weighted back-propagation will be performed on the
result according to the error situation of previous decision
path. Let Bx denotes the feature generated by Bx of Fig.
3. Px represents the predicted map corresponding to Hx of
Fig. 3. Then Px = decoder(Z,Bx), where decoder composed
of Convolution Blocks represents one of the decision path as
show in Fig. 3.

The testing process is different from the training process,
and the gradient does not need to be saved. The final result can
be generated by the prediction set P, which can be expressed
as Fout = σ(

∑3
i=0 Pi), where σ denotes Sigmoid activation

function. The testing process will activate all decision paths.

B. Bilateral Extreme Stripping (BES)

Based on the observation of the phenomenon in Fig. 1,
the existing SOD methods may produce more failure cases
when dealing with extremely large- or small-scale objects.
Moreover, the segmentation process has an asymmetric seg-
mentation requirements in the extreme-scale range. Therefore,
we propose a Bilateral Extreme Stripping encoder based on
existing bilateral networks [56] for the broader receptive fields.
This framework partitions the segmentation difficulties at the
extreme-scale range into different branches. Our BES encoder
contains a semantic branch and a detail branch. The semantic
branch makes full use of the global view of the transformer
model to extract global semantic features and enhance the

This article has been accepted for publication in IEEE Transactions on Image Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIP.2022.3232209

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 10,2023 at 08:24:44 UTC from IEEE Xplore.  Restrictions apply. 



SUBMISSION TO IEEE TRANSACTIONS ON IMAGE PROCESSING 5

𝑫𝑪𝑨𝑴𝟏

𝑫𝑪𝑨𝑴𝟐

𝑫𝑪𝑨𝑴𝟑

𝑫𝑪𝑨𝑴𝟎TB0 TB1 TB2 TB3

RB0 RB1 RB2 RB3

Semantic Branch

Detail Branch
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receptive fields of the overall network. The detail branch is
responsible for extracting local details. The advantage of our
BES is to strip semantic information and details. Extracting
detailed information often requires a higher input resolution,
while obtaining global semantics can appropriately reduce
the resolution. In this way, we can achieve a better trade-off
between details, semantics, and efficiency. Moreover, our BES
can apply the existing complex backbone to more downstream
tasks in a more efficient form.

Specifically, Fig. 4 shows the detailed structure of our BES
encoder, and the symbols used are consistent with the Fig. 3.
It can be seen that our BES merges the features at the same
level of the two branches. We choose ResNet-18 [55] to build
the detail branch. In order to enrich the detailed information
extracted by this branch, we remove the first down-sampling
operation to obtain more effective features at high resolution.
In this way, the resolution of the features output by i-th layer
is 1

2i of the initial resolution. As for the semantic branch, we
utilize Swin Transformer [54] to extract global features. Since
we only expect the semantic branch to provide more global
semantic associations, this allows us to choose a suitably small
input resolution for that branch. Thus, the input resolution of
the semantic branch is set to 56×56, and then passes through
the self-attention modules of the transformer in turn.

Notably, Conformer [47] utilizes a similar idea of bilateral
networks [56], [57] to combine CNNs and transformers, which
has achieved state-of-the-art performance in visual recognition
tasks. But our method is designed for asymmetric segmentation
requirements and has the following specific considerations:
1) Although the complementary features of these two types
of models can be integrated, the Conformer does not make
full use of the advantages of bilateral networks to accelerate
calculations. It is a luxury to extract semantics and details
separately with the same initial resolution input, especially
transformers are not sensitive to details compared to CNNs.
2) To cope with the asymmetric segmentation requirements,
we maintain the exclusivity of functions between the internal
bilateral branching structures. 3) In contrast to direct bridging
of bilateral features in Conformer, we propose a dynamic
attention filtering method for complementary features.

C. Dynamic Complementary Attention Module (DCAM)

Our Bilateral Extreme Stripping encoder can efficiently pro-
duce both low-resolution semantic features and high-resolution
detailed features. However, this introduces another problem:
how to combine the bilateral features to obtain more elastic
receptive fields. We propose DCAM to solve this problem.
Unlike other feature fusion modules, our DCAM is designed to
address the different characteristics of CNNs and transformers
as well as the difference in resolution of semantics and
details. We observe that global attention of the transformer
calculates the correlation between all patches in the spatial
level through the vector inner product, while the attention
mechanism of CNN establishes the connection between all
channels in the local space. The former can hardly express
the weight proportion between channels, while the latter is
difficult to calculate the weight coefficient of the whole spatial
range. Therefore, CNN features are used to generate dynamic
channel-wise weights for the transformer to make up for the
lack of correlation among channels. Transformer features are
utilized to obtain spatial weights for CNN to supplement the
spatial perspective. The dynamic attention mechanism can
adapt to the features of different models while bridging the
resolution differences of the bilateral features.

As shown in Fig. 5, it is assumed that X ∈ S′
and Y ∈ D

are features to be fused. We first use X to generate the spatial
weights for Y, which can be expressed as X

′
= σ(U(C(X))).

Here U represents the up-sampling operation, C represents
1 × 1 convolution, and σ represents the Sigmoid activation
function. Then we generate the channel weights of feature X,
which can be formulated as Y

′
= σ(G(C(Y))). G denotes

global average pooling operation. Next, DCAM will utilize
dynamic weights to enhance bilateral features, which can help
our BES encoder form a more elastic feature representation.
The specific process can be formulated as follows:

M = Cbr(U(Y
′
⊗X) c⃝(X

′
⊗Y)), (1)

where Cbr represents a convolution with a Batch Normalization
and a ReLU activation. ⊗ represents pixel-wise multiplication.
c⃝ denotes feature concatenation. Finally, the output feature
Z is generated through the residual structure, which can be
represented as:

Z = Cbr(M⊕ U(C(X))⊕ C(Y)), (2)

where ⊕ denotes pixel-wise addition. Since the features ob-
tained by transformer X contain rich spacial semantics and
CNN-based features Y are more capable of constructing
channel associations, we use the spatial semantics of X to
select the spatial information of Y, and use the channel-wise
vector generated by Y to adjust the channel weight of X. The
final result is obtained by fusing all the information through
the residual structure.

To demonstrate the effectiveness of DCAM, we visualize the
features before and after processing. Fig. 5 shows the features
visualization before and after DCAM. X-Low and X-High
indicate the situation where X takes the first layer feature
and the deepest layer feature, respectively. It can be seen that
the BES features have been severely differentiated, but the

This article has been accepted for publication in IEEE Transactions on Image Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIP.2022.3232209

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Peng Cheng Laboratory. Downloaded on January 10,2023 at 08:24:44 UTC from IEEE Xplore.  Restrictions apply. 



SUBMISSION TO IEEE TRANSACTIONS ON IMAGE PROCESSING 6

TABLE I
QUANTITATIVE COMPARISON TABLE WITH THE LATEST METHODS ON MULTIPLE INDICATORS, INCLUDING THE MAX AND MEAN F-MEASURE (F ∗

β AND
Fm
β THE LARGER THE BETTER), MAE (THE SMALLER THE BETTER), E-MEASURE (Eξ , THE LARGER THE BETTER), AND S-MEASURE (Sm , THE LARGER

THE BETTER) . THE BEST AND SECOND BEST RESULTS ARE MARKED IN RED, AND BLUE, RESPECTIVELY.

ECSSD (1000) HKU-IS (4447) DUTS-TE (5019) DUT-OMRON (5168) PASCAL-S (850)

Method F ∗
β ↑ Fm

β ↑ MAE ↓ Eξ ↑ Sm ↑ F ∗
β ↑ Fm

β ↑ MAE ↓ Eξ ↑ Sm ↑ F ∗
β ↑ Fm

β ↑ MAE ↓ Eξ ↑ Sm ↑ F ∗
β ↑ Fm

β ↑ MAE ↓ Eξ ↑ Sm ↑ F ∗
β ↑ Fm

β ↑ MAE ↓ Eξ ↑ Sm ↑

BASNet [2] .942 .880 .037 .921 .916 .928 .895 .032 .946 .909 .860 .791 .048 .884 .866 .805 .756 .056 .869 .836 .857 .775 .076 .847 .832

PoolNet [15] .944 .914 .039 .924 .922 .933 .896 .032 .949 .910 .880 .811 .040 .889 .878 .808 .746 .056 .863 .828 .869 .823 .074 .850 .847

CPD [3] .939 .917 .037 .925 .918 .925 .891 .034 .944 .905 .865 .805 .043 .887 .869 .797 .747 .056 .866 .825 .864 .824 .072 .849 .842

BANet [1] .945 .880 .035 .928 .916 .931 .895 .032 .950 .909 .872 .791 .040 .892 .866 .803 .756 .059 .860 .836 .870 .775 .070 .855 .832

GateNet [58] .945 .916 .040 .924 .920 .933 .899 .033 .949 .915 .888 .807 .040 .889 .885 .818 .746 .055 .862 .838 .875 .825 .068 .852 .852

U2Net [59] .951 .892 .033 .924 .928 .935 .896 .031 .948 .916 .873 .792 .045 .886 .874 .823 .761 .054 .871 .847 .862 .772 .076 .841 .836

DFI [60] .949 .920 .035 .924 .927 .934 .902 .031 .951 .920 .886 .814 .039 .892 .887 .818 .752 .055 .865 .839 .885 .837 .065 .857 .861

MINet [10] .947 .924 .033 .927 .925 .935 .909 .029 .953 .919 .884 .828 .037 .898 .884 .810 .755 .055 .865 .833 .865 .835 .064 .852 .851

GCPANet [61] .948 .919 .035 .920 .927 .938 .898 .031 .949 .920 .888 .817 .038 .891 .891 .812 .748 .056 .860 .839 .876 .833 .061 .850 .861

ITSDNet [44] .947 .895 .034 .927 .925 .934 .899 .031 .952 .917 .883 .804 .041 .895 .885 .821 .756 .061 .863 .840 .876 .792 .064 .853 .856

LDF [45] .950 .930 .034 .925 .924 .939 .914 .027 .954 .919 .898 .855 .034 .910 .892 .820 .773 .051 .873 .838 .874 .843 .059 .865 .856

PFSNet [7] .952 .932 .031 .928 .930 .943 .919 .026 .956 .924 .896 .847 .036 .902 .892 .823 .774 .055 .875 .842 .875 .837 .063 .856 .854

PSGLoss [51] .949 .932 .031 .928 .925 .938 .918 .027 .958 .919 .886 .849 .036 .908 .883 .811 .771 .052 .870 .831 .879 .848 .061 .858 .856

PurNet [62] .945 .921 .035 .925 .925 .936 .904 .030 .950 .917 .878 .823 .039 .897 .880 .814 .756 .051 .868 .841 .873 .827 .068 .851 .843

VST [14] .951 .920 .033 .918 .932 .942 .900 .029 .953 .928 .890 .818 .037 .892 .896 .825 .756 .058 .861 .850 .875 .829 .061 .837 .865

PA-KRN [8] .953 .931 .032 .924 .928 .943 .920 .027 .955 .923 .907 .865 .033 .916 .900 .834 .793 .050 .885 .853 .873 .838 .066 .857 .852

BBRF-tiny .958 .948 .024 .932 .935 .947 .936 .023 .962 .927 .910 .890 .026 .926 .900 .840 .810 .039 .885 .847 .890 .865 .051 .864 .866

BBRF .963 .950 .022 .934 .939 .958 .945 .020 .965 .935 .916 .893 .025 .927 .908 .843 .814 .042 .887 .855 .891 .869 .049 .867 .871
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Fig. 5. Illustration of the Cross-Domain Attention Fusion Module. X and
Y represent the output features of the transformer and CNN, respectively.
The feature maps denote the fusion effect when X and Y take low-level or
high-level features.

semantics and details are present in features X and Y. However,
after DCAM processing, the feature maps can represent the
salient objects more clearly and accurately.

D. Loop Compensation Strategy (LCS)

Bilateral Extreme Stripping and Dynamic Complementary
Attention Module can adaptively filter extreme-scale features
and generate broader receptive fields. To optimize the segmen-
tation effect, we further propose LCS to enhance the percep-
tion of different scale ranges and suppress error transmission.
On the one hand, We divide features of different scale ranges
into different decision paths through setting convolutions with
different dilated rates. On the other hand, we adopt the ran-
dom training process to suppress error transmission between
adjacent decision paths. With our LCS, we hope that each

decision path can acquire scale-specific features and different
paths could complement each other.

Compared with existing multi-branch modules or models,
the decision path of LCS is more flexible. Different deci-
sion paths, although contributing most of the parameters,
have parameter-independent dilated convolution and prediction
heads. The training process of different paths is randomly
and independently performed. The previous methods seldom
explore ways of partial network training. Each decision path in
the proposed Switch-Path Decoder can be trained separately.
This can make full use of the differences in training data
and different loss functions to obtain path specificity. In other
words, each path of SPD is no longer constrained by the
identical training data and error gradient. Meanwhile, the
parameter sharing, especially our SPD, can effectively ensure
the efficiency and calculation speed of the framework. LCS can
be explained in two parts: Switch-Path Decoder and Boosting
Loss. We will introduce these two parts in detail.

Switch-Path Decoder aims to strip multi-branch modules
trained in parallel into multiple decision paths, thereby re-
ducing the gradient correlation and realizing the boosting
operation between paths. Boosting loss is designed for the
integration of multiple decision paths. Its goal is to enhance
the complementary relationship of different paths and enhance
the overall effect of the ensemble model. As shown in Fig.
2, we set a prediction head for each decision path, so that
each path can be trained separately. After path stripping, the
prediction process becomes a multi-path voting mechanism.
During training, the complementarity among paths can be
enhanced by Boosting Loss. When testing, the final saliency
map can be generated from the voting results of multiple paths.
Only by introducing affordable parameters and calculations,
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Large-scale objects

Image GT OURS PAKRN VST PFSNet LDF GCPA MINet ITSDPurNet PSGloss

Regular-scale objects

Small-scale objects

Fig. 6. Visual comparison between the proposed method and the state-of-the-art methods. Our method can adapt better to input samples of different scale
ranges. Moreover, our BBRF can more precisely localize small-scale objects in multi-objects scenes, while being able to accurately segment the details of
large-scale objects.

LCS can realize the division of independent decision paths.
Each decision path has proprietary dilated convolutions and
prediction heads. As shown in Fig. 3, SPD specifies a decision
path through a switch. Any selected decision path is the
structure shown in the top of Fig. 3. Then we let Z4 go through
a specific dilated convolution to get the feature Bx. We merge
the residual feature set Z and Bx like FPN and obtain the
filtered features. Finally, we can get predicted maps after Hx.
Here, x ∈ {0, 1, 2, ..., N − 1}. In addition, the simplification
of a single path can speed up the convergence of the model.

Boosting Loss aims to enhance the complementarity be-
tween adjacent paths. During each iteration, we will randomly
select a path to save the gradient for training, and predict the
prediction result of the previous path to calculate the error
weight. Each iteration strengthens the chain compensation
relationship between adjacent paths of the model, and finally
achieves loop compensation of multiple decision paths, so as
to obtain more robust feature presentation. As shown in Fig. 3,
assume that x ∈ {0, 1, ..., N − 1} represents the path number
that needs to be trained in the current iteration. Then this

iteration will only perform error back-propagation on the x-
th path. And this path will consider the prediction error of
the previous path as a weight w ∈ RH×W . Here, H and W
indicate the height and width of the image. In this way, we
can highlight the pixel positions that were previously predicted
incorrectly. The calculation process of w can be denoted as:

wx = B(P(x−1+N)%N , g) + 1, (3)

where g ∈ RH×W denotes the ground-truth map. B denotes
the pixel-level Binary Cross Entropy [63], which can be
denoted as:

B(p, g) = −(g ⊗ log(p)⊕ (1− g)⊗ log(1− p)), (4)

where p ∈ RH×W denotes predicted map. log represents a
pixel-level logarithmic operation. The weight wx records the
weaknesses of the x-th decision path, and these weaknesses
will be strengthened during the training process of the adjacent
paths. The path compensation effect of our LCS is reflected in
the weighting process of the same loss across multiple paths.
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Fig. 7. Comparison of PR curves between our method and the state-of-the-art methods under four benchmark dataset. The figure shows that the proposed
method can better balance accuracy and recall.

The Boosting Loss can be calculated according to the weight
wx. It can be expressed as:

Lb(p, g, w) = Lwbce(p, g,wx) + Lwiou(p, g,wx), (5)

where Lwbce and Lwiou represent weighted Binary Cross
Entropy loss and weighted Intersection over Union loss, which
has been widely used in many methods such as [7], [17], [43],
[45]. They can be expressed as:

Lwbce(p, g,wx) =
S(B(p, g)⊗wx)

S(wx)
, (6)

Lwiou(p, g,wx) = 1− S((p⊗ g)⊗wx)

S(((p⊕ g)−(p⊗ g))⊗wx)
, (7)

where S represents the operation of summing all pixels. Other
symbols are consistent with the previous description.

E. Learning objective

We utilize the sum of Binary Cross Entropy (BCE) [63]
and Intersection over Union (IoU) [64] as the loss function,
which is widely used in LDF [45], etc. In addition to the final
prediction map, we will also supervise the output features of
each Convolution Block (CB) in Fig. 3. The total loss function
can be expressed as:

Ltot =

M∑
i=1

Lb(Fi, g,wx) + Lb(Px, g,wx), (8)

where Fi ∈ RH×W represents the prediction map of each CB
module, and Px ∈ RH×W represents the predicted map of
path x. M denotes the number of CB modules.

IV. EXPERIMENT

A. Experiment setting

Datasets and metrics. This paper involves the following
datasets: DUT-OMRON [65] with 5,168 images, ECSSD [66]
with 1,000 images, HKU-IS [67] with 4,447 images, PASCAL-
S [68] with 850 images, DUTS-TE [69] with 5,019 images,
DUTS-TR [69] with 10,553 images. Consistent with the latest
methods [45], [70], we choose DUTS-TR for training and
other datasets for verification.

Six widely used evaluation metrics are selected to evaluate
the performance of our method and existing state-of-the-art
methods. The first metric is the precision-recall curve. We

use the precision-recall curve to evaluate the prediction results
comprehensively. The second is MAE [71], which is defined as
the pixel-wise average absolute error between predicted maps
and ground-truth maps. To comprehensively consider recall
and precision, we use the max and mean F-measure (F ∗

β , F
m
β )

[65] to emphasize the proportional relationship between recall
and precision. Besides, we also utilize maximum Enhanced-
alignment Measure (Eξ) [72] and Structure Measure (Sm) for
more comprehensive comparisons.

Implementation details. We use an NVDIA GTX 2080Ti
GPU to train our network. By selecting different input resolu-
tions, we design two models with different calculation costs.
The input resolutions of BBRF and BBRF-tiny in the detail
branch are 3522 and 2242 respectively. The resolutions in the
semantic branch are both 562. The maximum learning rate of
the backbone is 0.004, and the other parts are expanded by ten
times. We use Warm-up and linear decay strategies to adjust
learning rate [45]. The optimization method uses Stochastic
Gradient Descent. Batch size is set to 26, and the epoch is set
to 32. We adopt the same data augmentation strategies with the
latest methods such as LDF [45], ITSDNet [44] and PFSNet
[7]. The prediction results do not need any post-processing.

B. Comparisons with state-of-the-arts

The experimental process involves 16 state-of-the-art meth-
ods in the past three years. Four of them in 2019 include
BANet [1], BASNet [2], PoolNet [15] and CPD [3]. Seven
methods in 2020 include LDF [45], MINet [10], GCPANet
[61], GateNet [58], DFI [60], ITSDNet [44] and U2Net [59].
The methods published in 2021 include PurNet [62] PA-KRN
[8], VST [14], PSGLoss [51] and PFSNet [7].

Performance and efficiency. The experimental results ver-
ify the performance and efficiency of our BBRF. On the one
hand, from BBRF in Tab. I and the PR curve in Fig. 7, our
method can achieve significant performance improvement on
various datasets. For example, the Fm

β of the previous methods
on PASCAL-S are mostly at a similar level, the highest is
0.843 of LDF [45], while our method reaches 0.869, a relative
increase of 3.1%. Besides, our method has a particularly low
MAE (from 0.031 to 0.022 on ECSSD) and a particularly
high F ∗

β (from 0.876 to 0.891 on PASCAL-S). Based on
the observation in Fig. 1, this is most likely caused by the
improvement of the segmentation effect of large or small-
scale objects. On the other hand, from Tab. II, our BBRF-tiny
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TABLE II
COMPARISONS OF PARAMETERS, CALCULATION COST, PEAK MEMORY

AND LATENCY BETWEEN OUR PROPOSED BBRF AND THE
STATE-OF-THE-ART METHODS.

Method Crop Size Params (M) Macs (G) Peak Memory (MB) Latency (MS)

BASNet [2] 2562 127.4 87.1 2178 17
MINet [10] 3202 162.4 105.4. 2348 30

GateNet [58] 3842 128.6 162.1 2286 18
LDF [45] 3522 25.2 15.5 1318 19

PA-KRN [8] 3522 102.2 98.7 2110 21
PFSNet [7] 3522 31.2 45.4 2004 24

Conformer [47] 3522 81.8 58.4 2384 33
VST [14] 2242 44.5 23.2 1948 40

BBRF-tiny 2242 74.4 27.1 1388 30
BBRF 3522 74.4 46.0 1772 45

TABLE III
ABLATION EXPERIMENTS OF THE BBRF. THE LAST LINE IS THE FINAL

RESULT OF OUR METHOD.

ECSSD DUTS-TE DUT-OMRON

ID Method Fm
β ↑ MAE ↓ Fm

β ↑ MAE ↓ Fm
β ↑ MAE ↓

a Res-18 .765 .063 .714 .069 .642 .091

b Swin-T .846 .032 .845 .033 .775 .052

c BES .941 .025 .879 .026 .793 .044

d BES+DCAM+PPM .942 .026 .874 .027 .784 .045

e BES+DCAM+GMS .944 .024 .881 .026 .798 .044

f BES+DCAM+LCS .950 .022 .893 .025 .814 .042

with a 2242 input resolution has mostly surpassed the previous
methods on five commonly used metrics. For example, on the
DUT-OMRON dataset, the Fm

β metric values of LDF [45] and
VST [14] are 0.773 and 0.756, while ours can reach 0.810.
It is worth mentioning that an appropriate reduction in the
resolution of detail branches may not produce a substantial
performance degradation. This is an additional effect of our
Bilateral Extreme Stripping framework. The reason for this
phenomenon is that the stripped detail branches do not require
much down-sampling to obtain semantic information. There-
fore, an appropriate reduction in the initial resolution can also
extract rich details. This reveals that our method can make a
better trade-off between performance and efficiency.

Visual comparison. The visualization results of the pro-
posed BBRF and nine representative state-of-the-art methods
are shown in Fig. 6. It is easy to see that the existing methods
may have the following problems: 1) Some objects are missing
in the prediction result when there are multiple salient objects.
2) Incomplete prediction of a single object. 3) Noise caused by
improper handling of details. Among the methods compared,
VST is based on the transformer model, while other methods
are based on CNN. We observe that VST can handle problems
1 and 2 better, but the segmentation details are often not ideal.
On the contrary, the methods based on CNN can better extract
details, while they may be difficult to deal with problem 1 and
2 due to the limited receptive field.

As can be seen from the third column, our BBRF has a
more comprehensive receptive field and can effectively handle
objects with scale variations. 1) For large-scale objects, the

Image GT OURS H0 H3

Fig. 8. Visualization of prediction results of different prediction heads in
SPD. H0, H3 represent the predicted maps of the first and fourth decision
paths, respectively.

proposed method can resolve details better. For example,
our salient map in the first row can segment the gap in
the aircraft steps. 2) For small-scale including multi-object
scenes, our method can find the most significant object from
the global view. For instance, the results in the last row
show that our method can find the location of the bird on
the way and identify the target as a significant object just
like the manually labeled results. 3) Our method not only
has superior performance in extremely large- and small-scale
scenes, but also achieves accurate segmentation for regular-
size objects. The results in the middle part of Fig. 6 shows that
the separation of details and semantics also generates better
segmentation results for regular-size objects.

Before and after the chain loop correction. In the pro-
posed SPD, error weighting is performed between adjacent
decision paths. After chain reinforcement, the features can
be improved. Our Loop Compensation Strategy emphasizes
feature-level mutual compensation between different decision
paths. As shown in the second row of images in Fig. 8, the
balloon predicted by the first decision path is ambiguous, while
the later paths compensate for more precise results. In fact,
we design multiple decision paths to complement each other
in the feature dimension, and finally achieve the segmentation
of objects with scale variation.

C. Ablation studies

To verify the innovations of this paper, we conduct ablation
experiments on the proposed Bilateral Extreme Stripping,
Dynamic Complementary Attention Module and Loop Com-
pensation Strategy.

The effect of Bilateral Extreme Stripping encoder. We
use different backbones to construct FPN [73] frameworks for
performance comparison. As shown in Tab. III, compared to
using the CNN (a) or transformer model directly (b), the basic
BES encoder (c) can effectively improve the performance.
Here, the BES encoder adopts pixel-by-pixel addition to filter
features. To make better use of the characteristics of bilateral
features, we embed DCAMs (d) into our BES encoder, which
can significantly reduce the MAE and improve the Fm

β metric.
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TABLE IV
ABLATION STUDY OF TRANSFORMER BRANCH WITH DIFFERENT INPUT

RESOLUTIONS.

Complexity ECSSD DUTS-TE DUT-OMRON

Crop Size Params(M) Mac(G) F ∗
β ↑MAE ↓ F ∗

β ↑MAE ↓ F ∗
β ↑ MAE ↓

28× 28 74.4 35.9 .953 .029 .902 .031 .827 .057

56× 56 74.4 46.0 .963 .022 .916 .025 .843 .042

84× 84 74.4 63.8 .962 .022 .917 .025 .841 .043

TABLE V
PERFORMANCE AND EFFICIENCY COMPARISON BETWEEN CONFORMER

AND OUR BBRF.

Complexity ECSSD DUTS-TE DUT-OMRON
Method Params(M) Mac(G) Fm

β ↑MAE ↓ Fm
β ↑MAE ↓ Fm

β ↑ MAE ↓

Conformer+LCS 81.8 58.4 .835 .026 .877 .030 .809 .050
BBRF-tiny 74.4 27.1 .948 .024 .890 .026 .810 .039

BBRF 74.4 46.0 .950 .022 .893 .025 .814 .042

BES vs Conformer [47]. We replace BBRF’s BES encoder
with the Conformer [47] for experimentation. The comparison
results with the same configuration and input resolution are
shown in Tab. V. It can be seen that our method has advantages
in performance and efficiency compared to the Conformer.
Specifically, our method reduces the computational cost by
21% (from 58.4 G to 46.0 G), while the performance has
been greatly improved. Especially our method can effectively
reduce MAE (from 0.030 to 0.025 on DUTS-TE). This result
can prove the efficiency and effectiveness of the proposed
method. Moreover, our BBRF-tiny is about 2 times faster
than Conformer in computation while keeping the performance
basically the same.

LCS vs multi-scale modules. We use the same backbone
to construct the network in the way shown in Fig. 2 for
comparison. The results are listed in Tab. III. Compared with
the commonly used multi-scale modules (d, e), LCS (f) has
significant performance advantages. Besides, our BES has
reduced the MAE to a very low level, while LCS can further
improve the effect of the model. This can demonstrate the role
of LCS in our BBRF.

The input resolution of semantic branch. Adjusting the
input resolution reasonably of the proposed BES encoder can
effectively improve the efficiency. As shown in Tab. IV, when
the input resolution of the detail branch is fixed, an increase
in the resolution of the semantic branch will not always bring
a significant performance improvement. Therefore, we choose
the settings in the second row to build our model.

D. Exploration on extremely large- / small-scale objects

We propose BBRF to cope with the challenges brought
by scale variation, especially extremely large- or small-scale
salient objects. To verify the advantages of the proposed
method, we set up more detailed experiments.

First, Fig. 1 and Fig. 6 show the advantages of BBRF to
handle scale variation. It can be seen that BBRF can achieve
the best results on objects with different scales, which reveals
the scale robustness of the model.

Second, Tab. VI shows the effect of BBRF in solving
asymmetric segmentation requirements. On the one hand,
BBRF has a significant performance improvement for small-
scale object segmentation. For example, on the DUT-OMRON
dataset, the Fm

β increases from 0.629 to 0.679, a relative
increase of 7.9%. In contrast, the entire dataset has an average
improvement of only 2.6%. On the other hand, BBRF can
greatly reduce the MAE of images containing large-scale
objects. It is worth noting that the transformer-based method
(VST) has a relatively low MAE on large-scale objects. But
its performance on small-scale objects is unsatisfactory. CNN-
based methods show the opposite trend. Tab. VI verifies that
BBRF can take into account the advantages of the both models,
which also reflects the flexible receptive fields of our method.

Besides, to understand the contribution of each part more
clear, we construct the overall framework BBRF step-by-step.
As show in Tab. VII, BES (Swin) builds a higher baseline,
which can show excellent segmentation results in extremely
large or small-scale object scenes at the same time. This
explains the significant effect of BES on extremely large or
small-scale object segmentation. Nevertheless, other contribu-
tions of BBRF further optimize the performance. For example,
when each part is added gradually, the Fm

β of ECSSD-Large
gradually reaches 0.968, while the MAE decreases to 0.038.
In addition, the experimental results show a similar trend in
the five datasets compared. The above experiments could prove
the effectiveness of each part of BBRF.

Lastly, to fully verify the performance of our BBRF
in extreme-scale scenarios, we built EX-LARGE and EX-
SMALL based on existing datasets, which contains more
challenging images. Specifically, we merge DUTS-TE [69],
HKU-IS [67], ECSSD [66], PASCAL-S [68], DUT-OMRON
[65] together, and calculate the pixel ratio of salient objects
in each image. And then we sort all the images according to
the ratio. We select the first 1,000 large-scale images and their
annotations to construct EX-LARGE, and select the last 1,000
small-scale images and their annotations to construct EX-
SMALL. As shown in Tab. VIII, our method can significantly
reduce the MAE of large-scale objects and the Fm

β of small-
scale objects. This highlights that our method can better deal
with extreme scale objects. In addition, we will also release
these two statistical datasets for further study.

V. LIMITATION

Although the results of the proposed network have reached
the current optimal performance, there are still the following
points worthy of further exploration. 1) The proposed method
is based on the existing datasets, and does not annotate a more
explanatory and accurate benchmark consisting of extremely
large- or small-scale objects. 2) Our method can better handle
scale variation, but the performance on extremely large- or
small-scale objects is still relatively low compared to regular-
scale objects, which still needs to be further explored. We will
continue to explore this issue in our future work.

VI. CONCLUSION

In this paper, we explore that it is difficult to segment large-
or small-scale objects due to their asymmetric segmentation
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TABLE VI
PERFORMANCE COMPARISON ON LARGE OR SMALL-SCALE OBJECT DATASETS. HERE, LARGE-SCALE OBJECTS ARE DEFINED AS THE TOP 20% OF THE

IMAGES IN THE DATASET IN ASCENDING ORDER OF SCALE RATIO. SMALL-SCALE OBJECTS ARE DEFINED AS THE TOP 20% OF THE IMAGES IN THE
DATASET SORTED IN DESCENDING ORDER OF THE SCALE RATIO.

ECSSD HKU-IS DUTS-TE DUT-OMRON PASCAL-S

Large Small Large Small Large Small Large Small Large Small

Method Fm
β ↑ MAE ↓ Fm

β ↑ MAE ↓ Fm
β ↑ MAE ↓ Fm

β ↑ MAE ↓ Fm
β ↑ MAE ↓ Fm

β ↑ MAE ↓ Fm
β ↑ MAE ↓ Fm

β ↑ MAE ↓ Fm
β ↑ MAE ↓ Fm

β ↑ MAE ↓

MINet [10] .947 .060 .877 .020 .955 .040 .820 .020 .926 .059 .633 .028 .891 .068 .524 .049 .907 .103 .668 .037

LDF [45] .946 .063 .893 .020 .953 .040 .842 .020 .925 .058 .715 .022 .879 .072 .590 .040 .906 .101 .724 .032

PFSNet [7] .941 .055 .899 .017 .956 .037 .843 .019 .925 .055 .691 .028 .893 .069 .573 .047 .882 .108 .715 .035

PA-KRN [8] .936 .063 .911 .013 .954 .039 .859 .019 .919 .061 .756 .020 .883 .071 .629 .038 .880 .122 .727 .036

VST [14] .959 .049 .846 .025 .963 .037 .783 .021 .938 .050 .601 .033 .910 .060 .491 .061 .936 .072 .637 .049

BBRF .968 .038 .926 .014 .965 .028 .897 .013 .948 .039 .806 .017 .922 .045 .679 .042 .933 .071 .777 .030

TABLE VII
ABLATION STUDY OF OUR LCS, DCAM AND BES ON LARGE OR SMALL-SCALE OBJECT DATASETS. HERE, LARGE-SCALE OBJECTS ARE DEFINED AS

THE TOP 20% OF THE IMAGES IN THE DATASET IN ASCENDING ORDER OF SCALE RATIO. SMALL-SCALE OBJECTS ARE DEFINED AS THE TOP 20% OF THE
IMAGES IN THE DATASET SORTED IN DESCENDING ORDER OF THE SCALE RATIO.

ECSSD HKU-IS DUTS-TE DUT-OMRON PASCAL-S

Large Small Large Small Large Small Large Small Large Small

Method Fm
β ↑ MAE ↓ Fm

β ↑ MAE ↓ Fm
β ↑ MAE ↓ Fm

β ↑ MAE ↓ Fm
β ↑ MAE ↓ Fm

β ↑ MAE ↓ Fm
β ↑ MAE ↓ Fm

β ↑ MAE ↓ Fm
β ↑ MAE ↓ Fm

β ↑ MAE ↓

BES(Swin) .960 .046 .897 .020 .959 .034 .868 .016 .945 .044 .748 .021 .913 .051 .625 .043 .930 .085 .770 .033

BES(Swin)+DCAM .963 .044 .901 .017 .961 .033 .870 .013 .946 .043 .751 .019 .917 .050 .628 .041 .932 .083 .774 .031

BES(Swin)+DCAM+SPD .965 .040 .919 .015 .961 .030 .887 .014 .945 .042 .801 .019 .919 .047 .670 .043 .930 .068 .778 .031

BES (Swin)+DCAM+SPD+LCS .968 .038 .926 .014 .965 .028 .897 .013 .948 .039 .806 .017 .922 .045 .679 .042 .933 .071 .777 .030

TABLE VIII
PERFORMANCE COMPARISON ON NEWLY BUILT EX-LARGE AND

EX-SMALL DATASETS.

EX-LARGE EX-SMALL
Method Fm

β ↑ MAE ↓ Fm
β ↑ MAE ↓

MINet [10] .927 .072 .487 .033
LDF [45] .924 .074 .585 .028

PFSNet [7] .915 .072 .561 .035
PA-KRN [8] .910 .079 .630 .029

VST [14] .945 .053 .447 .046

BBRF .954 .045 .684 .029

requirements. We deconstruct the role of receptive fields in
SOD and introduce a Bilateral Extreme Stripping encoder
based on the simplified vision transformer and the lightweight
CNN for the broader receptive fields. To combine bilateral
features and generate a more elastic perceptual perspective,
we propose a Dynamic Complementary Attention Module to
enhance flexible feature representation. To further highlight
the scale-specific perception of different scale ranges, we
propose a Loop Compensation Strategy for complementary
training of switch-paths through loop chain correction manner.
Experiments show that our method can achieve impressive
results under scale variable scenes.
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